
PAUL DEITEL
HARVEY DEITEL

NINTHNINTH
EDITION

HOW TO PROGRAMHOW TO HOW TO PROGRAMHOW TO HOW TO PROGRAMHOW TO HOW TO PROGRAM

with
Case Studies Introducing

Applications
Programming and

Systems
Programming

Deitel® Ser ies Page
Intro to Series
Intro to Python® for Computer Science

and Data Science: Learning to Program
with AI, Big Data and the Cloud

How To Program Series
C How to Program, 9/E
Java™ How to Program, Early Objects

Version, 11/E
Java™ How to Program, Late Objects

Version, 11/E
C++ How to Program, 10/E
Android™ How to Program, 3/E
Internet & World Wide Web How to

Program, 5/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® How to Program, 6/E

LiveLessons Video Training
https://deitel.com/LiveLessons/

Python® Fundamentals
Java™ Fundamentals
C++20 Fundamentals
C11/C18 Fundamentals
C# 6 Fundamentals
Android™ 6 Fundamentals, 3/E
C# 2012 Fundamentals
JavaScript Fundamentals
Swift™ Fundamentals

REVEL™ Interactive Multimedia
REVEL™ for Deitel Java™
REVEL™ for Deitel Python®

E-Books
https://VitalSource.com
https://RedShelf.com
https://Chegg.com

Intro to Python® for Computer Science
and Data Science: Learning to Program
with AI, Big Data and the Cloud

Java™ How to Program, 10/E and 11/E
C++ How to Program, 9/E and 10/E
C How to Program, 8/E and 9/E
Android™ How to Program, 2/E and 3/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® How to Program, 6/E

Deitel® Developer Series
Python® for Programmers
Java™ for Programmers, 4/E
C++20 for Programmers
Android™ 6 for Programmers: An App-

Driven Approach, 3/E
C for Programmers with an Introduction

to C11
C# 6 for Programmers
JavaScript for Programmers
Swift™ for Programmers

To receive updates on Deitel publications, please join the Deitel communities on
• Facebook®—https://facebook.com/DeitelFan

• Twitter®—@deitel

• LinkedIn®—https://linkedin.com/company/deitel-&-associates

• YouTube™—https://youtube.com/DeitelTV

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on Deitel programming-languages corporate training offered online
and on-site worldwide, write to deitel@deitel.com or visit:
 https://deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
https://deitel.com
https://pearson.com/deitel

https://deitel.com/LiveLessons/
https://VitalSource.com
https://RedShelf.com
https://Chegg.com
https://facebook.com/DeitelFan
https://linkedin.com/company/deitel-&-associates
https://deitel.com/training/
https://deitel.com
https://pearson.com/deitel
mailto:deitel@deitel.com
mailto:deitel@deitel.com
https://youtube.com/DeitelTV

Content Development: Tracy Johnson
Content Management: Dawn Murrin, Tracy Johnson
Content Production: Carole Snyder
Product Management: Holly Stark
Product Marketing: Wayne Stevens
Rights and Permissions: Anjali Singh

Please contact https://support.pearson.com/getsupport/s/ with any queries on
this content.

Copyright © 2022 by Pearson Education, Inc. or its affiliates, 221 River Street,
Hoboken, NJ 07030. All Rights Reserved. Manufactured in the United States of
America. This publication is protected by copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise. For information regarding permissions, request
forms, and the appropriate contacts within the Pearson Education Global Rights and
Permissions department, please visit https://www.pearsoned.com/permissions/.

PEARSON, ALWAYS LEARNING, and REVEL are exclusive trademarks owned by
Pearson Education, Inc. or its affiliates in the U.S. and/or other countries. Unless oth-
erwise indicated herein, any third-party trademarks, logos, or icons that may appear
in this work are the property of their respective owners, and any references to third-
party trademarks, logos, icons, or other trade dress are for demonstrative or descrip-
tive purposes only. Such references are not intended to imply any sponsorship,
endorsement, authorization, or promotion of Pearson’s products by the owners of
such marks, or any relationship between the owner and Pearson Education, Inc., or
its affiliates, authors, licensees, or distributors. Library of Congress Cataloging-in-
Publication Data

Library of Congress Cataloging-in-Publication Data
On file

ScoutAutomatedPrintCode

ISBN-10: 0-13-540467-3
ISBN-13: 978-0-13-739839-3

https://support.pearson.com/getsupport/s/
https://www.pearsoned.com/permissions/
https://www.pearsoned.com/permissions/

In memory of Dennis Ritchie,
creator of the C programming language
and co-creator of the UNIX operating system.

Paul and Harvey Deitel

Trademarks
DEITEL and the double-thumbs-up bug are registered trademarks of Deitel and Asso-
ciates, Inc.

Apple, Xcode, Swift, Objective-C, iOS and macOS are trademarks or registered
trademarks of Apple, Inc.

Java is a registered trademark of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds.

Microsoft and/or its respective suppliers make no representations about the suit-
ability of the information contained in the documents and related graphics published
as part of the services for any purpose. All such documents and related graphics are
provided “as is” without warranty of any kind. Microsoft and/or its respective sup-
pliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied
or statutory, fitness for a particular purpose, title and non-infringement. In no event
shall Microsoft and/or its respective suppliers be liable for any special, indirect or con-
sequential damages or any damages whatsoever resulting from loss of use, data or
profits, whether in an action of contract, negligence or other tortious action, arising
out of or in connection with the use or performance of information available from
the services.

The documents and related graphics contained herein could include technical inac-
curacies or typographical errors. Changes are periodically added to the information
herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial
screen shots may be viewed in full within the software version specified.

Other names may be trademarks of their respective owners.

Appendices D–G are PDF documents posted online at the book’s Companion
Website (located at https://www.pearson.com/deitel).

Preface xix

Before You Begin li

1 Introduction to Computers and C 1
1.1 Introduction 2
1.2 Hardware and Software 4

1.2.1 Moore’s Law 4
1.2.2 Computer Organization 5

1.3 Data Hierarchy 8
1.4 Machine Languages, Assembly Languages and High-Level Languages 11
1.5 Operating Systems 13
1.6 The C Programming Language 16
1.7 The C Standard Library and Open-Source Libraries 18
1.8 Other Popular Programming Languages 19
1.9 Typical C Program-Development Environment 21

1.9.1 Phase 1: Creating a Program 21
1.9.2 Phases 2 and 3: Preprocessing and Compiling a C Program 21
1.9.3 Phase 4: Linking 22
1.9.4 Phase 5: Loading 23
1.9.5 Phase 6: Execution 23
1.9.6 Problems That May Occur at Execution Time 23
1.9.7 Standard Input, Standard Output and Standard Error Streams 24

1.10 Test-Driving a C Application in Windows, Linux and macOS 24
1.10.1 Compiling and Running a C Application with Visual Studio

2019 Community Edition on Windows 10 25
1.10.2 Compiling and Running a C Application with Xcode on

macOS 29

Contents

https://www.pearson.com/deitel

viii Contents

1.10.3 Compiling and Running a C Application with GNU gcc
on Linux 32

1.10.4 Compiling and Running a C Application in a GCC Docker
Container Running Natively over Windows 10, macOS
or Linux 34

1.11 Internet, World Wide Web, the Cloud and IoT 35
1.11.1 The Internet: A Network of Networks 36
1.11.2 The World Wide Web: Making the Internet User-Friendly 37
1.11.3 The Cloud 37
1.11.4 The Internet of Things 38

1.12 Software Technologies 39
1.13 How Big Is Big Data? 39

1.13.1 Big-Data Analytics 45
1.13.2 Data Science and Big Data Are Making a Difference: Use Cases 46

1.14 Case Study—A Big-Data Mobile Application 47
1.15 AI—at the Intersection of Computer Science and Data Science 48

2 Intro to C Programming 55
2.1 Introduction 56
2.2 A Simple C Program: Printing a Line of Text 56
2.3 Another Simple C Program: Adding Two Integers 60
2.4 Memory Concepts 64
2.5 Arithmetic in C 65
2.6 Decision Making: Equality and Relational Operators 69
2.7 Secure C Programming 73

3 Structured Program Development 85
3.1 Introduction 86
3.2 Algorithms 86
3.3 Pseudocode 87
3.4 Control Structures 88
3.5 The if Selection Statement 90
3.6 The if…else Selection Statement 92
3.7 The while Iteration Statement 96
3.8 Formulating Algorithms Case Study 1: Counter-Controlled Iteration 97
3.9 Formulating Algorithms with Top-Down, Stepwise Refinement

Case Study 2: Sentinel-Controlled Iteration 99
3.10 Formulating Algorithms with Top-Down, Stepwise Refinement

Case Study 3: Nested Control Statements 106
3.11 Assignment Operators 110
3.12 Increment and Decrement Operators 111
3.13 Secure C Programming 114

Contents ix

4 Program Control 133
4.1 Introduction 134
4.2 Iteration Essentials 134
4.3 Counter-Controlled Iteration 135
4.4 for Iteration Statement 136
4.5 Examples Using the for Statement 140
4.6 switch Multiple-Selection Statement 144
4.7 do…while Iteration Statement 150
4.8 break and continue Statements 151
4.9 Logical Operators 153
4.10 Confusing Equality (==) and Assignment (=) Operators 157
4.11 Structured-Programming Summary 158
4.12 Secure C Programming 163

5 Functions 179
5.1 Introduction 180
5.2 Modularizing Programs in C 180
5.3 Math Library Functions 182
5.4 Functions 183
5.5 Function Definitions 184

5.5.1 square Function 184
5.5.2 maximum Function 187

5.6 Function Prototypes: A Deeper Look 188
5.7 Function-Call Stack and Stack Frames 191
5.8 Headers 195
5.9 Passing Arguments by Value and by Reference 197
5.10 Random-Number Generation 197
5.11 Random-Number Simulation Case Study: Building a Casino Game 202
5.12 Storage Classes 207
5.13 Scope Rules 209
5.14 Recursion 212
5.15 Example Using Recursion: Fibonacci Series 216
5.16 Recursion vs. Iteration 219
5.17 Secure C Programming—Secure Random-Number Generation 222

Random-Number Simulation Case Study: The Tortoise and the Hare 241

6 Arrays 243
6.1 Introduction 244
6.2 Arrays 244
6.3 Defining Arrays 246
6.4 Array Examples 246

x Contents

6.4.1 Defining an Array and Using a Loop to Set the Array’s
Element Values 247

6.4.2 Initializing an Array in a Definition with an Initializer List 248
6.4.3 Specifying an Array’s Size with a Symbolic Constant and

Initializing Array Elements with Calculations 249
6.4.4 Summing the Elements of an Array 250
6.4.5 Using Arrays to Summarize Survey Results 250
6.4.6 Graphing Array Element Values with Bar Charts 252
6.4.7 Rolling a Die 60,000,000 Times and Summarizing

the Results in an Array 253
6.5 Using Character Arrays to Store and Manipulate Strings 255

6.5.1 Initializing a Character Array with a String 255
6.5.2 Initializing a Character Array with an Initializer List

of Characters 255
6.5.3 Accessing the Characters in a String 255
6.5.4 Inputting into a Character Array 255
6.5.5 Outputting a Character Array That Represents a String 256
6.5.6 Demonstrating Character Arrays 256

6.6 Static Local Arrays and Automatic Local Arrays 258
6.7 Passing Arrays to Functions 260
6.8 Sorting Arrays 264
6.9 Intro to Data Science Case Study: Survey Data Analysis 267
6.10 Searching Arrays 272

6.10.1 Searching an Array with Linear Search 272
6.10.2 Searching an Array with Binary Search 274

6.11 Multidimensional Arrays 278
6.11.1 Illustrating a Two-Dimensional Array 278
6.11.2 Initializing a Double-Subscripted Array 279
6.11.3 Setting the Elements in One Row 281
6.11.4 Totaling the Elements in a Two-Dimensional Array 281
6.11.5 Two-Dimensional Array Manipulations 281

6.12 Variable-Length Arrays 285
6.13 Secure C Programming 289

7 Pointers 309
7.1 Introduction 310
7.2 Pointer Variable Definitions and Initialization 311
7.3 Pointer Operators 312
7.4 Passing Arguments to Functions by Reference 315
7.5 Using the const Qualifier with Pointers 319

7.5.1 Converting a String to Uppercase Using a Non-Constant
Pointer to Non-Constant Data 320

Contents xi

7.5.2 Printing a String One Character at a Time Using a
Non-Constant Pointer to Constant Data 320

7.5.3 Attempting to Modify a Constant Pointer to
Non-Constant Data 322

7.5.4 Attempting to Modify a Constant Pointer to Constant Data 323
7.6 Bubble Sort Using Pass-By-Reference 324
7.7 sizeof Operator 328
7.8 Pointer Expressions and Pointer Arithmetic 330

7.8.1 Pointer Arithmetic Operators 331
7.8.2 Aiming a Pointer at an Array 331
7.8.3 Adding an Integer to a Pointer 331
7.8.4 Subtracting an Integer from a Pointer 332
7.8.5 Incrementing and Decrementing a Pointer 332
7.8.6 Subtracting One Pointer from Another 332
7.8.7 Assigning Pointers to One Another 332
7.8.8 Pointer to void 332
7.8.9 Comparing Pointers 333

7.9 Relationship between Pointers and Arrays 333
7.9.1 Pointer/Offset Notation 333
7.9.2 Pointer/Subscript Notation 334
7.9.3 Cannot Modify an Array Name with Pointer Arithmetic 334
7.9.4 Demonstrating Pointer Subscripting and Offsets 334
7.9.5 String Copying with Arrays and Pointers 336

7.10 Arrays of Pointers 338
7.11 Random-Number Simulation Case Study: Card Shuffling and Dealing 339
7.12 Function Pointers 344

7.12.1 Sorting in Ascending or Descending Order 344
7.12.2 Using Function Pointers to Create a Menu-Driven System 347

7.13 Secure C Programming 349

Special Section: Building Your Own Computer as a Virtual Machine 362
Special Section—Embedded Systems Programming Case Study:
Robotics with the Webots Simulator 369

8 Characters and Strings 387
8.1 Introduction 388
8.2 Fundamentals of Strings and Characters 388
8.3 Character-Handling Library 390

8.3.1 Functions isdigit, isalpha, isalnum and isxdigit 391
8.3.2 Functions islower, isupper, tolower and toupper 393
8.3.3 Functions isspace, iscntrl, ispunct, isprint and isgraph 394

8.4 String-Conversion Functions 396
8.4.1 Function strtod 396

xii Contents

8.4.2 Function strtol 397
8.4.3 Function strtoul 398

8.5 Standard Input/Output Library Functions 399
8.5.1 Functions fgets and putchar 399
8.5.2 Function getchar 401
8.5.3 Function sprintf 401
8.5.4 Function sscanf 402

8.6 String-Manipulation Functions of the String-Handling Library 403
8.6.1 Functions strcpy and strncpy 404
8.6.2 Functions strcat and strncat 405

8.7 Comparison Functions of the String-Handling Library 406
8.8 Search Functions of the String-Handling Library 408

8.8.1 Function strchr 409
8.8.2 Function strcspn 410
8.8.3 Function strpbrk 410
8.8.4 Function strrchr 411
8.8.5 Function strspn 411
8.8.6 Function strstr 412
8.8.7 Function strtok 413

8.9 Memory Functions of the String-Handling Library 414
8.9.1 Function memcpy 415
8.9.2 Function memmove 416
8.9.3 Function memcmp 416
8.9.4 Function memchr 417
8.9.5 Function memset 417

8.10 Other Functions of the String-Handling Library 419
8.10.1 Function strerror 419
8.10.2 Function strlen 419

8.11 Secure C Programming 420
Pqyoaf X Nylfomigrob Qwbbfmh Mndogvk: Rboqlrut yua
Boklnxhmywex 434
Secure C Programming Case Study: Public-Key Cryptography 440

9 Formatted Input/Output 449
9.1 Introduction 450
9.2 Streams 450
9.3 Formatting Output with printf 451
9.4 Printing Integers 452
9.5 Printing Floating-Point Numbers 453

9.5.1 Conversion Specifiers e, E and f 454
9.5.2 Conversion Specifiers g and G 454
9.5.3 Demonstrating Floating-Point Conversion Specifiers 455

9.6 Printing Strings and Characters 456

Contents xiii

9.7 Other Conversion Specifiers 457
9.8 Printing with Field Widths and Precision 458

9.8.1 Field Widths for Integers 458
9.8.2 Precisions for Integers, Floating-Point Numbers and Strings 459
9.8.3 Combining Field Widths and Precisions 460

9.9 printf Format Flags 461
9.9.1 Right- and Left-Alignment 461
9.9.2 Printing Positive and Negative Numbers with and without

the + Flag 462
9.9.3 Using the Space Flag 462
9.9.4 Using the # Flag 463
9.9.5 Using the 0 Flag 463

9.10 Printing Literals and Escape Sequences 464
9.11 Formatted Input with scanf 465

9.11.1 scanf Syntax 466
9.11.2 scanf Conversion Specifiers 466
9.11.3 Reading Integers 467
9.11.4 Reading Floating-Point Numbers 468
9.11.5 Reading Characters and Strings 468
9.11.6 Using Scan Sets 469
9.11.7 Using Field Widths 470
9.11.8 Skipping Characters in an Input Stream 471

9.12 Secure C Programming 472

10 Structures, Unions, Bit Manipulation and
Enumerations 481

10.1 Introduction 482
10.2 Structure Definitions 483

10.2.1 Self-Referential Structures 483
10.2.2 Defining Variables of Structure Types 484
10.2.3 Structure Tag Names 484
10.2.4 Operations That Can Be Performed on Structures 484

10.3 Initializing Structures 486
10.4 Accessing Structure Members with . and -> 486
10.5 Using Structures with Functions 488
10.6 typedef 488
10.7 Random-Number Simulation Case Study: High-Performance Card

Shuffling and Dealing 489
10.8 Unions 492

10.8.1 union Declarations 493
10.8.2 Allowed unions Operations 493
10.8.3 Initializing unions in Declarations 493
10.8.4 Demonstrating unions 494

xiv Contents

10.9 Bitwise Operators 495
10.9.1 Displaying an Unsigned Integer’s Bits 496
10.9.2 Making Function displayBits More Generic and Portable 497
10.9.3 Using the Bitwise AND, Inclusive OR, Exclusive OR and

Complement Operators 498
10.9.4 Using the Bitwise Left- and Right-Shift Operators 501
10.9.5 Bitwise Assignment Operators 503

10.10 Bit Fields 504
10.10.1 Defining Bit Fields 504
10.10.2 Using Bit Fields to Represent a Card’s Face, Suit and Color 505
10.10.3 Unnamed Bit Fields 507

10.11 Enumeration Constants 507
10.12 Anonymous Structures and Unions 509
10.13 Secure C Programming 510

Special Section: Raylib Game-Programming Case Studies 520
Game-Programming Case Study Exercise: SpotOn Game 526
Game-Programming Case Study: Cannon Game 527
Visualization with raylib—Law of Large Numbers Animation 529
Case Study: The Tortoise and the Hare with raylib—
a Multimedia “Extravaganza” 531
Random-Number Simulation Case Study: High-Performance
Card Shuffling and Dealing with Card Images and raylib 533

11 File Processing 539
11.1 Introduction 540
11.2 Files and Streams 540
11.3 Creating a Sequential-Access File 542

11.3.1 Pointer to a FILE 543
11.3.2 Using fopen to Open a File 543
11.3.3 Using feof to Check for the End-of-File Indicator 543
11.3.4 Using fprintf to Write to a File 544
11.3.5 Using fclose to Close a File 544
11.3.6 File-Open Modes 545

11.4 Reading Data from a Sequential-Access File 547
11.4.1 Resetting the File Position Pointer 548
11.4.2 Credit Inquiry Program 548

11.5 Random-Access Files 552
11.6 Creating a Random-Access File 553
11.7 Writing Data Randomly to a Random-Access File 555

11.7.1 Positioning the File Position Pointer with fseek 557
11.7.2 Error Checking 558

11.8 Reading Data from a Random-Access File 558

Contents xv

11.9 Case Study: Transaction-Processing System 560
11.10 Secure C Programming 566

AI Case Study: Intro to NLP—Who Wrote Shakespeare’s Works? 576
AI/Data-Science Case Study—Machine Learning with GNU
Scientific Library 582
AI/Data-Science Case Study: Time Series and Simple
Linear Regression 588
Web Services and the Cloud Case Study—libcurl and
OpenWeatherMap 589

12 Data Structures 595
12.1 Introduction 596
12.2 Self-Referential Structures 597
12.3 Dynamic Memory Management 598
12.4 Linked Lists 599

12.4.1 Function insert 603
12.4.2 Function delete 605
12.4.3 Functions isEmpty and printList 607

12.5 Stacks 608
12.5.1 Function push 612
12.5.2 Function pop 613
12.5.3 Applications of Stacks 613

12.6 Queues 614
12.6.1 Function enqueue 619
12.6.2 Function dequeue 620

12.7 Trees 621
12.7.1 Function insertNode 624
12.7.2 Traversals: Functions inOrder, preOrder and postOrder 625
12.7.3 Duplicate Elimination 626
12.7.4 Binary Tree Search 626
12.7.5 Other Binary Tree Operations 626

12.8 Secure C Programming 627
Special Section: Systems Software Case Study—Building Your
Own Compiler 636

13 Computer-Science Thinking: Sorting Algorithms
and Big O 657

13.1 Introduction 658
13.2 Efficiency of Algorithms: Big O 659

13.2.1 O(1) Algorithms 659
13.2.2 O(n) Algorithms 659
13.2.3 O(n2) Algorithms 659

xvi Contents

13.3 Selection Sort 660
13.3.1 Selection Sort Implementation 661
13.3.2 Efficiency of Selection Sort 664

13.4 Insertion Sort 665
13.4.1 Insertion Sort Implementation 665
13.4.2 Efficiency of Insertion Sort 668

13.5 Case Study: Visualizing the High-Performance Merge Sort 668
13.5.1 Merge Sort Implementation 669
13.5.2 Efficiency of Merge Sort 673
13.5.3 Summarizing Various Algorithms’ Big O Notations 674

14 Preprocessor 681
14.1 Introduction 682
14.2 #include Preprocessor Directive 683
14.3 #define Preprocessor Directive: Symbolic Constants 683
14.4 #define Preprocessor Directive: Macros 684

14.4.1 Macro with One Argument 685
14.4.2 Macro with Two Arguments 686
14.4.3 Macro Continuation Character 686
14.4.4 #undef Preprocessor Directive 686
14.4.5 Standard-Library Macros 686
14.4.6 Do Not Place Expressions with Side Effects in Macros 687

14.5 Conditional Compilation 687
14.5.1 #if…#endif Preprocessor Directive 687
14.5.2 Commenting Out Blocks of Code with #if…#endif 688
14.5.3 Conditionally Compiling Debug Code 688

14.6 #error and #pragma Preprocessor Directives 689
14.7 # and ## Operators 690
14.8 Line Numbers 690
14.9 Predefined Symbolic Constants 691
14.10 Assertions 691
14.11 Secure C Programming 692

15 Other Topics 699
15.1 Introduction 700
15.2 Variable-Length Argument Lists 700
15.3 Using Command-Line Arguments 702
15.4 Compiling Multiple-Source-File Programs 704

15.4.1 extern Declarations for Global Variables in Other Files 704
15.4.2 Function Prototypes 705
15.4.3 Restricting Scope with static 705

15.5 Program Termination with exit and atexit 706
15.6 Suffixes for Integer and Floating-Point Literals 708

Contents xvii

15.7 Signal Handling 708
15.8 Dynamic Memory Allocation Functions calloc and realloc 711
15.9 goto: Unconditional Branching 713

A Operator Precedence Chart 719

B ASCII Character Set 721

C Multithreading/Multicore and Other
C18/C11/C99 Topics 723

C.1 Introduction 724
C.2 Headers Added in C99 725
C.3 Designated Initializers and Compound Literals 725
C.4 Type bool 727
C.5 Complex Numbers 728
C.6 Macros with Variable-Length Argument Lists 730
C.7 Other C99 Features 730

C.7.1 Compiler Minimum Resource Limits 730
C.7.2 The restrict Keyword 730
C.7.3 Reliable Integer Division 731
C.7.4 Flexible Array Members 731
C.7.5 Type-Generic Math 732
C.7.6 Inline Functions 732
C.7.7 __func__ Predefined Identifier 732
C.7.8 va_copy Macro 733

C.8 C11/C18 Features 733
C.8.1 C11/C18 Headers 733
C.8.2 quick_exit Function 733
C.8.3 Unicode® Support 733
C.8.4 _Noreturn Function Specifier 734
C.8.5 Type-Generic Expressions 734
C.8.6 Annex L: Analyzability and Undefined Behavior 734
C.8.7 Memory Alignment Control 735
C.8.8 Static Assertions 735
C.8.9 Floating-Point Types 735

C.9 Case Study: Performance with Multithreading and Multicore Systems 736
C.9.1 Example: Sequential Execution of Two

Compute-Intensive Tasks 739
C.9.2 Example: Multithreaded Execution of Two

Compute-Intensive Tasks 741
C.9.3 Other Multithreading Features 745

xviii Contents

D Intro to Object-Oriented Programming Concepts 747
D.1 Introduction 747
D.2 Object-Oriented Programming Languages 747
D.3 Automobile as an Object 748
D.4 Methods and Classes 748
D.5 Instantiation 748
D.6 Reuse 748
D.7 Messages and Method Calls 749
D.8 Attributes and Instance Variables 749
D.9 Inheritance 749
D.10 Object-Oriented Analysis and Design (OOAD) 750

Index 751

Online Appendices
D Number Systems

E Using the Visual Studio Debugger

F Using the GNU gdb Debugger

G Using the Xcode Debugger

An Innovative C Programming Textbook for the 2020s
Good programmers write code that humans can understand.1

—Martin Fowler

I think that it's extraordinarily important that we in computer science keep fun in
computing.2

—Alan Perlis

Welcome to C How to Program, Ninth Edition. We present a friendly, contemporary,
code-intensive, case-study-oriented introduction to C—which is among the world’s
most popular programming languages.3 Whether you’re a student, an instructor or a
professional programmer, this book has much to offer you. In this Preface, we present
the “soul of the book.”

At the heart of the book is the Deitel signature live-code approach—we generally
present concepts in the context of 147 complete, working, real-world C programs,
rather than in code snippets. We follow each code example with one or more live pro-
gram input/output dialogs. All the code is provided free for download at
 https://deitel.com/c-how-to-program-9-e
 https://pearson.com/deitel

You should execute each program in parallel with reading the text, making your
learning experience “come alive.”

For many decades:

• computer hardware has rapidly been getting faster, cheaper and smaller,

• Internet bandwidth (that is, its information-carrying capacity) has rapidly
been getting larger and cheaper, and

• quality computer software has become ever more abundant and often free or
nearly free through the open-source movement.

1. Martin Fowler (with contributions by Kent Beck). Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999. p. 15.

2. Alan Perlis, Quoted in the book dedication of The Structure and Interpretation of Computer Pro-
grams, 2/e by Hal Abelson, Gerald Jay Sussman and Julie Sussman. McGraw-Hill. 1996.

3. Tiobe Index for November 2020. Accessed November 9, 2020. https://www.tiobe.com/
tiobe-index/.

Preface

https://deitel.com/c-how-to-program-9-e
https://pearson.com/deitel
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

xx Preface

We’ll say lots more about these important trends. The Internet of Things (IoT) is
already connecting tens of billions of computerized devices of every imaginable type.
These generate enormous volumes of data (one form of “big data”) at rapidly increas-
ing speeds and quantities. And most computing will eventually be performed online
in “the Cloud”—that is, by using computing services accessible over the Internet.

For the novice, the book’s early chapters establish a solid foundation in program-
ming fundamentals. The mid-range to high-end chapters and the 20+ case studies ease
novices into the world of professional software-development challenges and practices.

Given the extraordinary performance demands that today’s applications place on
computer hardware, software and the Internet, professionals often choose C to build
the most performance-intensive portions of these applications. Throughout the book,
we emphasize performance issues to help you prepare for industry.

The book’s modular architecture (see the chart on the inside front cover) makes
it appropriate for several audiences:

• Introductory and intermediate college programming courses in Computer
Science, Computer Engineering, Information Systems, Information Technolo-
gy, Software Engineering and related disciplines.

• Science, technology, engineering and math (STEM) college courses with a
programming component.

• Professional industry training courses.

• Experienced professionals learning C to prepare for upcoming software-
development projects.

We’ve enjoyed writing nine editions of this book over the last 29 years. We hope you’ll
find C How to Program, 9/e informative, challenging and entertaining as you prepare to
develop leading-edge, high-performance applications and systems in your career.

New and Updated Features in This Ninth Edition
Here, we briefly overview some of this edition’s new and updated features. There are
many more. The sections that follow provide more details:

• We added a one-page color Table of Contents chart on the inside front cover,
making it easy for you to see the entire book from “40,000 feet.” This chart
emphasizes the book’s modular architecture and lists most of the case studies.

• Some of the case studies are book sections that walk through the complete
source code—these are supported by end-of-chapter exercises that might ask
you to modify the code presented in the text or take on related challenges.
Some are exercises with detailed specifications from which you should be able
to develop the code solution on your own. Some are exercises that ask you to
visit websites that contain nice tutorials. And some are exercises that ask you
to visit developer websites where there may be code to study, but no tutori-
als—and the code may not be well commented. Instructors will decide which
of the case studies are appropriate for their particular audiences.

 New and Updated Features in This Ninth Edition xxi

• We adhere to the C11/C18 standards.
• We tested all the code for correctness on the Windows, macOS and Linux

operating systems using the latest versions of the Visual C++, Xcode and
GNU gcc compilers, respectively, noting differences among the platforms.
See the Before You Begin section that follows this Preface for software instal-
lation instructions.

• We used the clang-tidy static code analysis tool to check all the code in the
book’s code examples for improvement suggestions, from simple items like
ensuring variables are initialized to warnings about potential security flaws.
We also ran this tool on the code solutions that we make available to instructors
for hundreds of the book’s exercises. The complete list of code checks can be
found at https://clang.llvm.org/extra/clang-tidy/checks/list.html.

• GNU gcc tends to be the most compliant C compiler. To enable macOS and
Windows users to use gcc if they wish, Chapter 1 includes a test-drive
demonstrating how to compile programs and run them using gcc in the
cross-platform GNU Compiler Collection Docker container.

• We’ve added 350+ integrated Self-Check exercises, each followed immedi-
ately by its answer. These are ideal for self study and for use in “flipped class-
rooms” (see the “Flipped Classrooms” section later in this Preface).

• To ensure that book content is topical, we did extensive Internet research on
C specifically and the world of computing in general, which influenced our
choice of case studies. We show C as it’s intended to be used with a rich col-
lection of applications programming and systems programming case studies,
focusing on computer-science, artificial intelligence, data science and other
fields. See the “Case Studies” section later in this Preface for more details.

• In the text, code examples, exercises and case studies, we familiarize students
with current topics of interest to developers, including open-source software,
virtualization, simulation, web services, multithreading, multicore hardware
architecture, systems programming, game programming, animation, visual-
ization, 2D and 3D graphics, artificial intelligence, natural language process-
ing, machine learning, robotics, data science, secure programming,
cryptography, Docker, GitHub, StackOverflow, forums and more.

• We adhere to the latest ACM/IEEE computing curricula recommendations,
which call for covering security, data science, ethics, privacy and performance
concepts and using real-world data throughout the curriculum. See the
“Computing and Data Science Curricula” section for more details.

• Most chapters in this book’s recent editions end with Secure C programming
sections that focus on the SEI CERT C Coding Standard from the CERT
group of Carnegie Mellon University’s Software Engineering Institute (SEI).
For this edition, we tuned the SEI CERT-based sections. We also added secu-
rity icons in the page margin whenever we discuss a security-related issue in the
text. All of this is consistent with the ACM/IEEE computing curricula docu-

SEC

https://clang.llvm.org/extra/clang-tidy/checks/list.html

xxii Preface

ments’ enhanced emphasis on security. See the “Computing and Data Science
Curricula” section later in this Preface for a list of the key curricula documents.

• Consistent with our richer treatment of security, we’ve added case studies on
secret-key and public-key cryptography. The latter includes a detailed walk-
through of the enormously popular RSA algorithm’s steps, providing hints to
help you build a working, simple, small-scale implementation.

• We’ve enhanced existing case studies and added new ones focusing on AI and
data science, including simulations with random-number generation, survey
data analysis, natural language processing (NLP) and artificial intelligence
(machine-learning with simple linear regression). Data science is emphasized
in the latest ACM/IEEE computing curricula documents.

• We’ve added exercises in which students use the Internet to research ethics
and privacy issues in computing.

• We tuned our mutltithreading and multicore performance case study. We
also show a performance icon in the margin whenever we discuss a perfor-
mance-related issue in the text.

• We integrated the previous edition’s hundreds of software-development tips
directly into the text for a smoother reading experience. We call out common
errors and good software engineering practices with new margin icons.

• We upgraded our appendix on additional sorting algorithms and analysis of
algorithms with Big O to full-chapter status (Chapter 13).

• C programmers often subsequently learn one or more C-based object-oriented
languages. We added an appendix that presents a friendly intro to object-
oriented programming concepts and terminology. C is a procedural program-
ming language, so this appendix will help students appreciate differences in
thinking between C developers and the folks who program in languages like
C++, Java, C#, Objective-C, Swift and other object-oriented languages. We do
lots of things like this in the book to prepare students for industry.

• Several case studies now have you use free open-source libraries and tools.

• We added a case study that performs visualization with gnuplot.

• We removed the previous edition’s introduction to C++ programming to
make room for the hundreds of integrated self-check exercises and our new
applications programming and systems programming case studies.

• This new edition is published in a larger font size and page size for enhanced
readability.

A Tour of the Book
The Table of Contents graphic on the inside front cover shows the book’s modular
architecture. Instructors can conveniently adapt the content to a variety of courses and
audiences. Here we present a brief chapter-by-chapter walkthrough and indicate where

PERF

ERR
SE

 A Tour of the Book xxiii

the book’s case studies are located. Some are in-chapter examples and some are end-of-
chapter exercises. Some are fully coded. For others, you’ll develop the solution.

Chapters 1–5 are traditional introductory C programming topics. Chapters 6–11
are intermediate topics forming the high end of Computer Science 1 and related
courses. Chapters 12–15 are advanced topics for late CS1 or early CS2 courses. Here’s
a list of the topical, challenging and often entertaining hands-on case studies.

Systems Programming Case Studies
• Systems Software—Building Your Own Computer (as a virtual machine)

• Systems Software—Building Your Own Compiler

• Embedded Systems Programming—Robotics, 3D graphics and animation
with the Webots Simulator

• Performance with Multithreading and Multicore Systems

Application Programming Case Studies
• Algorithm Development—Counter-Controlled Iteration

• Algorithm Development—Sentinel-Controlled Iteration

• Algorithm Development—Nested Control Statements

• Random-Number Simulation—Building a Casino Game

• Random-Number Simulation—Card Shuffling and Dealing

• Random-Number Simulation—The Tortoise and the Hare Race

• Intro to Data Science—Survey Data Analysis

• Direct-Access File Processing—Building a Transaction-Processing System

• Visualizing Searching and Sorting Algorithms—Binary Search and Merge Sort.

• Artificial Intelligence/Data Science—Natural Language Processing (“Who
Really Wrote the Works of William Shakespeare?”)

• Artificial Intelligence/Data Science—Machine Learning with the GNU Sci-
entific Library (“Statistics Can Be Deceiving” and “Have Average January
Temperatures in New York City Been Rising Over the Last Century?”)

• Game Programming—Cannon Game with the raylib Library

• Game Programming—SpotOn Game with the raylib Library

• Multimedia: Audio and Animation—The Tortoise and the Hare Race with
the raylib Library

• Security and Cryptography—Implementing a Vigenère Secret-Key Cipher
and RSA Public-Key Cryptography

• Animated Visualization with raylib—The Law of Large Numbers

• Web Services and the Cloud—Getting a Weather Report Using libcurl and
the OpenWeatherMap Web Services, and An Introduction to Building
Mashups with Web Services.

xxiv Preface

Whether you’re a student getting a sense of the textbook you’ll be using, an
instructor planning your course syllabus or a professional software developer deciding
which chapters to read as you prepare for a project, the following chapter overviews
will help you make the best decisions.

Part 1: Programming Fundamentals Quickstart

Chapter 1, Introduction to Computers and C, engages novice students with intriguing
facts and figures to excite them about studying computers and computer programming.
The chapter includes current technology trends, hardware and software concepts and
the data hierarchy from bits to databases. It lays the groundwork for the C program-
ming discussions in Chapters 2–15, the appendices and the integrated case studies.

We discuss the programming-language types and various technologies you’re likely
to use as you develop software. We introduce the C standard library—existing, reus-
able, top-quality, high-performance functions to help you avoid “reinventing the
wheel.” You’ll enhance your productivity by using libraries to perform significant tasks
while writing only modest numbers of instructions. We also introduce the Internet,
the World Wide Web, the “Cloud” and the Internet of Things (IoT), laying the
groundwork for modern applications development.

This chapter’s test-drives demonstrate how to compile and execute C code with

• Microsoft’s Visual C++ in Visual Studio on Windows,

• Apple’s Xcode on macOS, and

• GNU’s gcc on Linux.

We’ve run the book’s 147 code examples using each environment.4 Choose whichever
program-development environment you prefer—the book works well with others, too.

We also demonstrate GNU gcc in the GNU Compiler Collection Docker con-
tainer. This enables you to run the latest GNU gcc compiler on Windows, macOS
or Linux—this is important because the GNU compilers generally implement all (or
most) features in the latest language standards. See the Before You Begin section that
follows this Preface for compiler installation instructions. See the Docker section later
in this Preface for more information on this important developer tool. For Windows
users, we point to Microsoft’s step-by-step instructions that allow you to install Linux
in Windows via the Windows Subsystem for Linux (WSL). This is another way to
be able to use the GNU gcc compiler on Windows.

You’ll learn just how big “big data” is and how quickly it’s getting even bigger.
The chapter closes with an introduction to artificial intelligence (AI)—a key overlap
between the computer-science and data-science fields. AI and data science are likely
to play significant roles in your computing career.

Chapter 2, Intro to C Programming, presents C fundamentals and illustrates key
language features, including input, output, fundamental data types, computer mem-
ory concepts, arithmetic operators and their precedence, and decision making.

4. We point out the few cases in which a compiler does not support a particular feature.

 A Tour of the Book xxv

Chapter 3, Structured Program Development, is one of the most important chapters
for programming novices. It focuses on problem-solving and algorithm development
with C’s control statements. You’ll develop algorithms through top-down, stepwise
refinement, using the if and if…else selection statements, the while iteration state-
ment for counter-controlled and sentinel-controlled iteration, and the increment, dec-
rement and assignment operators. The chapter presents three algorithm-development
case studies.

Chapter 4, Program Control, presents C’s other control statements—for, do…while,
switch, break and continue—and the logical operators. A key feature of this chapter is
its structured-programming summary.

Chapter 5, Functions, introduces program construction using existing and custom
functions as building blocks. We demonstrate simulation techniques with random-
number generation. We also discuss passing information between functions and how
the function-call stack and stack frames support the function call/return mechanism.
We begin our treatment of recursion. This chapter also presents our first simulation case
study—Building a Casino Game, which is enhanced by end-of-chapter exercises.

Part 2: Arrays, Pointers and Strings

Chapter 6, Arrays, presents C’s built-in array data structure for representing lists and
tables of values. You’ll define and initialize arrays, and refer to their individual elements.
We discuss passing arrays to functions, sorting and searching arrays, manipulating mul-
tidimensional arrays and creating variable-length arrays whose size is determined at exe-
cution time. Chapter 13, Computer-Science Thinking: Sorting Algorithms and Big
O, discusses more sophisticated and higher-performance sorting algorithms and
presents a friendly introduction to analysis of algorithms with computer science’s Big
O notation. Chapter 6 presents our first data-science case study—Intro to Data Sci-
ence: Survey Data Analysis. In the exercises, we also present two Game Programming
with Graphics, Sound and Collision Detection case studies and an Embedded Sys-
tems Programming case study (Robotics with the Webots Simulator).

Chapter 7, Pointers, presents what is arguably C’s most powerful feature. Pointers
enable programs to

• accomplish pass-by-reference,

• pass functions to other functions, and

• create and manipulate dynamic data structures, which you’ll study in detail in
Chapter 12.

The chapter explains pointer concepts, such as declaring pointers, initializing point-
ers, getting the memory address of a variable, dereferencing pointers, pointer arith-
metic and the close relationship between arrays and pointers. This chapter presents
our first systems software case-study exercise—Building Your Own Computer with
Simulation. This case study introduces an essential modern computer-architecture
topic—virtual machines.

xxvi Preface

Chapter 8, Characters and Strings, introduces the C standard library’s string, character
and memory-block processing functions. You’ll use these powerful capabilities in
Chapter 11, File Processing, as you work through a natural language processing
(NLP) case study. You’ll see that strings are intimately related to pointers and arrays.

Part 3: Formatted Input/Output, Structures and File Processing

Chapter 9, Formatted Input/Output, discusses the powerful formatting features of
functions scanf and printf. When properly used, these functions securely input data
from the standard input stream and output data to the standard output stream,
respectively.

Chapter 10, Structures, Unions, Bit Manipulation and Enumerations, introduces
structures (structs) for aggregating related data items into custom types, unions for
sharing memory among multiple variables, typedefs for creating aliases for previously
defined data types, bitwise operators for manipulating the individual bits of integral
operands and enumerations for defining sets of named integer constants. Many C pro-
grammers go on to study C++ and object-oriented programming. In C++, C’s structs
evolve into classes, which are the “blueprints” C++ programmers use to create objects.
C structs contain only data. C++ classes can contain data and functions.

Chapter 11, File Processing, introduces files for long-term data retention, even when
the computer is powered off. Such data is said to be “persistent.” The chapter explains
how plain-text files and binary files are created, updated and processed. We consider
both sequential-access and random-access file processing. In one of our case-study
exercises, you’ll read data from a comma-separated value (CSV) file. CSV is one of the
most popular file formats in the data-science community. This chapter presents our
next case study—Building a Random-Access Transaction-Processing System. We
use random-access files to simulate the kind of high-speed direct-access capabilities
that industrial-strength database-management systems have. This chapter also presents
our first artificial-intelligence/data-science case study, which uses Natural Language
Processing (NLP) techniques to begin investigating the controversial question, “Who
really wrote the works of William Shakespeare?” A second artificial-intelligence/data-
science case study—Machine Learning with the GNU Scientific Library—investi-
gates Anscombe’s Quartet using simple linear regression.5 This is a collection of four
dramatically different datasets that have identical or nearly identical basic descriptive
statistics. It offers a valuable insight for students and developers learning some data-
science basics in this computer-science textbook. The case study then asks you to run
a simple linear regression on 126 years of New York City average January temperature
data to determine if there is a cooling or warming trend.

5. “Anscombe’s Quartet.” Accessed November 13, 2020. https://en.wikipedia.org/wiki/
Anscombe%27s_quartet.

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://en.wikipedia.org/wiki/Anscombe%27s_quartet

 A Tour of the Book xxvii

Part 4: Algorithms and Data Structures

Chapter 12, Data Structures, uses structs to aggregate related data items into cus-
tom types, typedefs to create aliases for previously defined types, and dynamically
linked data structures that can grow and shrink at execution time—linked lists,
stacks, queues and binary trees. You can use the techniques you learn to implement
other data structures. This chapter also presents our next systems-software case study
exercise—Building Your Own Compiler. We’ll define a simple yet powerful high-
level language. You’ll write some high-level-language programs that your compiler
will compile into the machine language of the computer you built in Chapter 7. The
compiler will place its machine-language output into a file. Your computer will load
the machine language from the file into its memory, execute it and produce appro-
priate outputs.

Chapter 13, Computer-Science Thinking: Sorting Algorithms and Big O, intro-
duces some classic computer-science topics. We consider several algorithms and com-
pare their processor demands and memory consumption. We present a friendly
introduction to computer science’s Big O notation, which indicates how hard an
algorithm may have to work to solve a problem, based on the number of items it must
process. The chapter includes the case study Visualizing the High-Performance
Merge Sort.

Our recursion (Chapter 5), arrays (Chapter 6), searching (Chapter 6), data structures
(Chapter 12), sorting (Chapter 13) and Big O (Chapter 13) coverage provides nice
content for a C data structures course.

Part 5: Preprocessor and Other Topics

Chapter 14, Preprocessor, discusses additional features of the C preprocessor, such
as using #include to help manage files in large programs, using #define to create
macros with and without arguments, using conditional compilation to specify por-
tions of a program that should not always be compiled (e.g., extra code used only
during program development), displaying error messages during conditional compi-
lation, and using assertions to test whether expressions’ values are correct.

Chapter 15, Other Topics, covers additional C topics, including multithreading sup-
port (available in GNU gcc, but not Xcode or Visual C++), variable-length argument
lists, command-line arguments, compiling multiple-source-file programs, extern dec-
larations for global variables in other files, function prototypes, restricting scope with
static, makefiles, program termination with exit and atexit, suffixes for integer and
floating-point literals, signal handling, dynamic memory-allocation functions calloc
and realloc and unconditional branching with goto. This chapter presents our final
case study—Performance with Multithreading and Multicore Systems. This case
study demonstrates how to create multithreaded programs that will run faster (and
often much faster) on today’s multicore computer architectures. This is a nice capstone

xxviii Preface

case study for a book about C, for which writing high-performance programs is para-
mount.

Appendices

Appendix A, Operator Precedence Chart, lists C’s operators in highest-to-lowest
precedence order.

Appendix B, ASCII Character Set, shows characters and their corresponding
numeric codes.

Appendix C, Multithreading/Multicore and Other C18/C11/C99 Topics, covers
designated initializers, compound literals, type bool, complex numbers, additions to
the preprocessor, the restrict keyword, reliable integer division, flexible array mem-
bers, relaxed constraints on aggregate initialization, type generic math, inline func-
tions, return without expression, __func__ predefined identifier, va_copy macro,
C11 headers, _Generic keyword (type generic expressions), quick_exit function,
Unicode® support, _noreturn function specifier, type-generic expressions, Annex L:
Analyzability and Undefined Behavior, memory-alignment control, static assertions,
floating-point types and the timespec_get function.

Appendix D, Intro to Object-Oriented Programming Concepts, presents a friendly
overview of object-oriented programming terminology and concepts. After learning
C, you’ll likely also learn one or more C-based object-oriented languages—such as
C++, Java, C#, Objective-C or Swift—and use them side-by-side with C.

Online Appendices

Appendix E, Number Systems, introduces the binary, octal, decimal and hexadeci-
mal number systems.

Appendices F–H, Using the Visual Studio Debugger, Using the GNU gdb Debug-
ger and Using the Xcode Debugger, demonstrate how to use our three preferred
compilers’ basic debugging capabilities to locate and correct execution-time problems
in your programs.

C How to Program, 9/e Key Features
C Programming Fundamentals
In our rich coverage of C fundamentals:

• We emphasize problem-solving and algorithm development.

• To help students prepare to work in industry, we use the terminology from
the latest C standard documents in preference to general programming terms.

• We avoid heavy math, leaving it to upper-level courses. Optional mathemat-
ical exercises are included for science and engineering courses.

 C How to Program, 9/e Key Features xxix

C11 and C18 Standards
C11 refined and expanded C’s capabilities. We’ve added more features from the C11
standard. Since C11, there has been only one new version, C18.6 It “addressed defects
in C11 without introducing new language features.”7

Innovation: “Intro-to” Pedagogy with 350+ Integrated Self-Check Exercises
This book uses our new “Intro to” pedagogy with integrated Self Checks and answers.
We introduced this pedagogy in our recent textbook, Intro to Python for Computer Sci-
ence and Data Science: Learning to Program with AI, Big Data and the Cloud.

• Chapter sections are intentionally small. We use a “read-a-little, do-a-little,
test-a-little” approach. You read about a new concept, study and execute the
corresponding code examples, then test your understanding of the new con-
cept via the integrated Self-Check exercises immediately followed by their
answers. This will help you keep a brisk learning pace.

• Fill-in-the-blank, true/false and discussion Self Checks enable you to test
your understanding of the concepts and terminology you’ve just studied.

• Code-based Self Checks give you a chance to use the terminology and rein-
force the programming techniques you’ve just studied.

• The Self-Checks are particularly valuable for flipped classroom courses—
we’ll soon say more about that popular educational phenomenon.

KIS (Keep It Simple), KIS (Keep it Small), KIT (Keep it Topical)
• Keep it simple—We strive for simplicity and clarity.

• Keep it small—Many of the book’s examples are small. We use more substan-
tial code examples, exercises and projects when appropriate, particularly in the
case studies that are a core feature of this textbook.

• Keep it topical—“Who dares to teach must never cease to learn.”8 (J. C.
Dana)—In our research, we browsed, read or watched thousands of current
articles, research papers, white papers, books, videos, webinars, blog posts,
forum posts, documentation pieces and more.

6. ISO/IEC 9899:2018, Information technology — Programming languages — C, https://
www.iso.org/standard/74528.html.

7. https://en.wikipedia.org/wiki/C18_(C_standard_revision). Also http://www.iso-
9899.info/wiki/The_Standard.

8. John Cotton Dana. From https://www.bartleby.com/73/1799.html: “In 1912 Dana, a
Newark, New Jersey, librarian, was asked to supply a Latin quotation suitable for inscription on
a new building at Newark State College (now Kean University), Union, New Jersey. Unable to
find an appropriate quotation, Dana composed what became the college motto.—The New York
Times Book Review, March 5, 1967, p. 55.”

https://www.iso.org/standard/74528.html
https://en.wikipedia.org/wiki/C18_(C_standard_revision)
http://www.iso-9899.info/wiki/The_Standard
https://www.bartleby.com/73/1799.html
https://www.iso.org/standard/74528.html
http://www.iso-9899.info/wiki/The_Standard

xxx Preface

Hundreds of Contemporary Examples, Exercises and Projects (EEPs)
You’ll use a hands-on applied approach to learn from a broad selection of real-world
examples, exercises and projects (EEPs) drawn from computer science, data science
and other fields:

• You’ll attack exciting and entertaining challenges in our larger case studies,
such as building a casino game, building a survey-data-analysis program,
building a transaction-processing system, building your own computer (using
simulation to build a virtual machine), using AI/data-science technologies
such as natural language processing and machine learning, building your
own compiler, programming computer games, programming robotics simu-
lations with Webots, and writing multithreaded code to take advantage of
today’s multicore computer architectures to get the best performance from
your computer.

• Research and project exercises encourage you to go deeper into what you’ve
learned and explore other technologies. We encourage you to use computers
and the Internet to solve significant problems. Projects are often more exten-
sive in scope than the exercises—some might require days or weeks of imple-
mentation effort. Many of these are appropriate for class projects, term
projects, directed-study projects, capstone-course projects and thesis
research. We do not provide solutions to the projects.

• Instructors can tailor their courses to their audience’s unique requirements
and vary labs and exam questions each semester.

Working with Open-Source Software
In those days [batch processing] programmers never even documented their programs, because
it was assumed that nobody else would ever use them. Now, however, time-sharing had made
exchanging software trivial: you just stored one copy in the public repository and thereby
effectively gave it to the world. Immediately people began to document their programs and
to think of them as being usable by others. They started to build on each other’s work.9

—Robert Fano, Founding Director of MIT’s Project MAC in the 1960s, which evolved
into today’s Computer Science and Artificial Intelligence Laboratory (CSAIL)10

Open source is software with source code that anyone can inspect, modify, and
enhance.”11 We encourage you to try lots of demos and view free, open-source code
examples (available on sites such as GitHub) for inspiration. We say more about
GitHub in the section “Thinking Like a Developer—GitHub, StackOverflow and
More.”

9. Robert Fano, quoted in Dream Machine: J.C.R. Licklider and the Revolution That Made Com-
puting Personal by Mitchell Waldrop. Penguin Putnam, 2002. p. 232.

10. “MIT Computer Science and Artificial Intelligence Laboratory.” Accessed November 9, 2020.
https://en.wikipedia.org/wiki/MIT_Computer_Science_and_Artificial_Intelli-
gence_Laboratory.

11. “What is open source?” Accessed November 14, 2020. https://opensource.com/resourc-
es/what-open-source.

https://en.wikipedia.org/wiki/MIT_Computer_Science_and_Artificial_Intelligence_Laboratory
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source

 C How to Program, 9/e Key Features xxxi

Visualizations
We include high-level visualizations produced with the gnuplot open-source visual-
ization package to reinforce your understanding of the concepts:

• We use visualizations as a pedagogic tool. For instance, one example makes the
law of large numbers “come alive” in a dice-rolling simulation (see Chapter
10—Raylib Game Programming Case Studies later in this Preface). As this
program performs increasing numbers of die rolls, you’ll see each of the six fac-
es’ (1, 2, 3, 4, 5, 6) percentage of the total rolls gradually approach 16.667%
(1/6th), and the lengths of the bars representing the percentages equalize.

• You should experiment with the code to implement your own visualizations.

Data Experiences
In the book’s examples, exercises and projects—especially in the file-processing chap-
ter—you’ll work with real-world data such as Shakespeare’s play Romeo and Juliet.
You’ll download and analyze text from Project Gutenberg—a great source of free
downloadable texts for analysis. The site contains nearly 63,000 e-books in various
formats, including plain-text files—these are out of copyright in the United States.
You’ll also work with real-world temperature data. In particular, you’ll analyze 126
years of New York City average January temperature data and determine whether
there is a cooling or warming trend. You’ll get this data from National Oceanic and
Atmospheric Administration (NOAA) website noaa.gov.

Thinking Like a Developer—GitHub, StackOverflow and More
The best way to prepare [to be a programmer] is to write programs, and to study great pro-
grams that other people have written. In my case, I went to the garbage cans at the Com-
puter Science Center and fished out listings of their operating systems.12

—William Gates

• To help prepare for your career, you’ll work with such popular developer web-
sites as GitHub and StackOverflow, and you’ll do Internet research.

• StackOverflow is one of the most popular developer-oriented, question-and-
answer sites.

• There is a massive C open-source community. For example, on GitHub,
there are over 32,00013 C code repositories! You can check out other people’s
C code on GitHub and even build upon it if you like. This is a great way to
learn and is a natural extension of our live-code teaching philosophy.14

• GitHub is an excellent venue for finding free, open-source code to incorpo-
rate into your projects—and for you to contribute your code to the open-

12. William Gates, quoted in Programmers at Work: Interviews With 19 Programmers Who Shaped
the Computer Industry by Susan Lammers. Microsoft Press, 1986, p. 83.

13. “C.” Accessed January 4, 2021. https://github.com/topics/c.
14. Students will need to become familiar with the variety of open-source licenses for software on

GitHub.

https://github.com/topics/c

xxxii Preface

source community if you like. Fifty million developers use GitHub.15 The
site currently hosts over 100 million repositories for code written in an enor-
mous number of languages16—developers contributed to 44+ million reposi-
tories in 2019 alone.17 GitHub is a crucial element of the professional
software developer’s arsenal with version control tools that help teams of
developers manage public open-source projects and private projects.

• In 2018, Microsoft purchased GitHub for $7.5 billion. If you become a soft-
ware developer, you’ll almost certainly use GitHub regularly. According to Mic-
rosoft’s CEO, Satya Nadella, they bought GitHub to “empower every developer
to build, innovate and solve the world’s most pressing challenges.”18

• We encourage you to study and execute lots of developers’ open-source C
code on GitHub.

Privacy
The ACM/IEEE’s curricula recommendations for Computer Science, Information
Technology and Cybersecurity mention privacy over 200 times. Every programming
student and professional needs to be acutely aware of privacy issues and concerns.
Students research privacy in four exercises in Chapters 1, 3 and 10.

In Chapter 1’s exercises, you’ll start thinking about these issues by researching ever-
stricter privacy laws such as HIPAA (Health Insurance Portability and Accountability
Act) and the California Consumer Privacy Act (CCPA) in the United States and
GDPR (General Data Protection Regulation) for the European Union.

Ethics
The ACM’s curricula recommendations for Computer Science, Information Technol-
ogy and Cybersecurity mention ethics more than 100 times. In several Chapter 1 exer-
cises, you’ll focus on ethics issues via Internet research. You’ll investigate privacy and
ethical issues surrounding intelligent assistants, such as IBM Watson, Amazon Alexa,
Apple Siri, Google Assistant and Microsoft Cortana. For example, a judge ordered
Amazon to turn over Alexa recordings for use in a criminal case.19

Performance
Programmers prefer C (and C++) for performance-intensive operating systems, real-
time systems, embedded systems, game systems and communications systems, so we
focus on performance issues. We use timing operations in our multithreading exam-

15. “GitHub.” Accessed November 14, 2020. https://github.com/.
16. “GitHub is how people build software.” Accessed November 14, 2020. https://github.com/

about.
17. “The State of the Octoverse.” Accessed November 14, 2020. https://octoverse.github.com.
18. “Microsoft to acquire GitHub for $7.5 billion.” Accessed November 14, 2020. https://

news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/.
19. “Judge orders Amazon to turn over Echo recordings in double murder case.” Accessed November

14, 2020. https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-
case/.

https://github.com/
https://github.com/about
https://octoverse.github.com
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/
https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/
https://github.com/about
https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/

 C How to Program, 9/e Key Features xxxiii

ples to measure the performance improvement we get on today’s popular multicore
systems, as we employ an increasing number of cores.

Static Code Analysis Tools
Static code analysis tools let you quickly check your code for common errors and secu-
rity problems and provide insights for improving your code. We checked all our C code
using the clang-tidy tool (https://clang.llvm.org/extra/clang-tidy/). We also
used the compiler flag -Wall in the GNU gcc and Clang compilers to enable all com-
piler warnings. With a few exceptions for warnings beyond this book’s scope, we ensure
that our programs compile without warning messages.

How We’re Handling C11’s Annex K and printf_s/scanf_s
The C11 standard’s Annex K introduced more secure versions of printf (for output)
and scanf (for input) called printf_s and scanf_s. We discuss these functions and
the corresponding security issues in Sections 6.13 and 7.13:

• Annex K is optional, so not every C vendor implements it. In particular,
GNU C++ and Clang C++ do not implement Annex K, so using scanf_s and
printf_s might compromise your code’s portability among compilers.

• Microsoft implemented its own Visual C++ versions of printf_s and scanf_s
before the C11 standard. Its compiler immediately began warning on every
scanf call that scanf was deprecated—i.e., it should no longer be used—and
that you should consider using scanf_s instead. Microsoft now treats what used
to be a warning about scanf as an error. By default, a program with scanf will
not compile on Visual C++. Chapter 1’s Visual C++ test-drive shows how to
handle this issue and compile our programs.

• Many organizations have coding standards that require code to compile
without warning messages. There are two ways to eliminate Visual C++’s
scanf warnings—use scanf_s instead of scanf or disable these warnings.

• There is some discussion of removing Annex K from the C standard. For this
reason, we use printf/scanf throughout this book and show Visual C++ users
how to disable Microsoft’s printf/scanf errors. Windows users who prefer
not to do that can use the gcc compiler in the GNU GCC Docker container,
which we discuss in this Preface’s “Docker” section. See the Before You
Begin section that follows this Preface, and see Section 1.10 for details.

New Appendix: Intro to Object-Oriented Programming Appendix
C’s programming model is called procedural programming. We teach it as struc-
tured procedural programming. After learning C, you’ll likely also learn one or more
C-based object-oriented languages—such as Java, C++, C#, Objective-C or Swift—
and use them side-by-side with C. Many of these languages support several pro-
gramming paradigms among procedural programming, object-oriented program-
ming, generic programming and functional-style programming. In Appendix D,
we present a friendly overview of object-oriented programming fundamentals.

https://clang.llvm.org/extra/clang-tidy/

xxxiv Preface

A Case Studies Tour
We include many case studies as more substantial chapter examples, exercises and
projects (EEPs). These are at an appropriate level for introductory programming
courses. We anticipate that instructors will select subsets of the case studies appropri-
ate for their particular courses.

Chapter 5—Random-Number Simulation: Building a Casino Game
In this case study, you’ll use random-number generation and simulation techniques
to implement the popular casino dice game called craps.

Chapter 5—Random-Number Simulation Case Study: The Tortoise and
the Hare Race
In this case study exercise, you’ll use random-number generation and simulation
techniques to implement the famous race between the tortoise and the hare.

Chapter 6—Visualizing Binary Search
In this case study, you’ll learn the high-speed binary-search algorithm and see a visu-
alization that shows the algorithm’s halving effect that achieves high performance.

Chapter 6—Intro to Data Science: Survey Data Analysis
In this case study, you’ll learn various basic descriptive statistics (mean, median and
mode) that are commonly used to “get to know your data.” You’ll then build a nice
array-manipulation application that calculates these statistics for a batch of survey data.

Chapter 7—Random-Number Simulation—Card Shuffling and Dealing
In this case study, you’ll use arrays of strings, random-number generation and simu-
lation techniques to implement a text-based card-shuffling-and-dealing program.

Chapter 7—Embedded Systems Programming: Robotics with the Webots
Simulator
Webots (https://cyberbotics.com/) is a wonderful open-source, 3D, robotics sim-
ulator that runs on Windows, macOS and Linux. It comes bundled with simulations
for dozens of robots that walk, fly, roll, drive and more:

https://cyberbotics.com/doc/guide/robots

You’ll use the free tier of the Webot robotics simulator to explore their dozens of
simulated robots. You’ll execute various full-color 3D robotics simulations written
in C and study the provided code. Webots is a self-contained development environ-
ment that provides a C code editor and compiler. You’ll use these tools to program
your own simulations using Webot’s robots.

Webots provides lots of fully coded C programs. A great way for you to learn C
is to study existing programs, modify them to work a bit differently and observe the
results. Many prominent robotics companies use Webots simulators to prototype
new products.

https://cyberbotics.com/
https://cyberbotics.com/doc/guide/robots

 A Case Studies Tour xxxv

Chapter 7—Systems Software Case Study: Building Your Own Computer
(Virtual Machine) with Simulation
In the context of several exercises, you’ll “peel open” a hypothetical computer and look
at its internal structure. We introduce simple machine-language programming and
write several small machine-language programs for this computer, which we call the
Simpletron. As its name implies, it’s a simple machine, but as you’ll see, a powerful
one as well. The Simpletron runs programs written in the only language it directly
understands—that is, Simpletron Machine Language, or SML for short. To make
this an especially valuable experience, you’ll then build a computer (through the
technique of software-based simulation) on which you can actually run your
machine-language programs! The Simpletron experience will give you a basic intro-
duction to the notion of virtual machines—one of the most important systems-
architecture concepts in modern computing.

Chapter 8—Pqyoaf X Nylfomigrob Qwbbfmh Mndogvk: Rboqlrut yua
Boklnxhmywex
This case study exercise’s title looks like gibberish. This is not a mistake! In this exer-
cise, we introduce cryptography, which is critically important in today’s connected
world. Every day, cryptography is used behind the scenes to ensure that your Inter-
net-based communications are private and secure. This case study exercise continues
our security emphasis by having readers study the Vigenère secret-key cipher algo-
rithm and implement it using array-processing techniques.20 They’ll then use it to
encrypt and decrypt messages and to decrypt this section’s title.

Chapter 8—RSA Public-Key Cryptography
Secret key encryption and decryption have a weakness—an encrypted message can be
decrypted by anyone who discovers or steals the secret key. We explore public-key
cryptography with the RSA algorithm. This technique performs encryption with a
public key known to every sender who might want to send a secret message to a par-
ticular receiver. The public key can be used to encrypt messages but not decrypt
them. Messages can be decrypted only with a paired private key known only to the
receiver, so it’s much more secure than the secret key in secret-key cryptography. RSA
is among the world’s most widely used public-key cryptography technologies. You’ll
build a working, small-scale, classroom version of the RSA cryptosystem.

Chapter 10—Raylib Game Programming Case Studies
In this series of five case study exercises and 10 additional exercises, you’ll use the
open-source, cross-platform raylib21 game programming library, which supports Win-
dows, macOS, Linux and other platforms. The raylib development team provides
many C demos to help you learn key library features and techniques. You’ll study two
completely coded games and a dynamic animated visualization that we created:

20. “Vigenère Cipher.” Accessed November 22, 2020. https://en.wikipedia.org/wiki/
Vigenère_cipher.

21. “raylib.” Accessed November 14, 2020. https://www.raylib.com.

https://en.wikipedia.org/wiki/Vigen�re_cipher
https://www.raylib.com
https://en.wikipedia.org/wiki/Vigen�re_cipher

xxxvi Preface

• The Spot-On game tests your reflexes by requiring you to click moving spots
before they disappear. With each new game level the spots move faster, mak-
ing them harder to click.

• The Cannon game challenges you to repeatedly aim and fire a cannon to
destroy nine moving targets before a time limit expires. A moving blocker
makes the game more difficult.

• The Law of Large Numbers dynamic animated visualization repeatedly rolls
a six-sided die and creates an animated bar chart. Visualizations give you a
powerful way to understand data that goes beyond simply looking at raw data.
This case study exercise allows students to see the “law of large numbers” at
work. When repeatedly rolling a die, we expect each die face to appear approx-
imately 1/6th (16.667%) of the time. For small numbers of rolls (e.g., 60 or
600), you’ll see that the frequencies typically are not evenly distributed. As
you simulate larger numbers of die rolls (e.g., 60,000), you’ll see the die fre-
quencies become more balanced. When you simulate significant numbers of
die rolls (e.g., 60,000,000), the bars will appear to be the same size.

The games and simulation use various raylib capabilities, including shapes, colors,
sounds, animation, collision detection and user-input events (such as mouse clicks).

After studying our code, you’ll use the raylib graphics, animation and sound fea-
tures you learn to enhance your implementation of Chapter 5’s Tortoise and the
Hare Race. You’ll incorporate a traditional horse race’s sounds, and multiple tortoise
and hare images to create a fun, animated multimedia “extravaganza.” Then, you’ll
use a raylib to enhance this chapter’s high-performance card-shuffling-and-dealing
simulation to display card images. Finally, you can select from 10 additional raylib
game-programming and simulation exercises. Get creative—have some fun design-
ing and building your own games, too!

Chapter 11—Case Study: Building a Random-Access Transaction-
Processing System
In this case study, you’ll use random-access file processing to implement a simple
transaction-processing system that simulates the kind of high-speed direct-access
capabilities that industrial-strength database-management systems have. This case
study gives you both application-programming and some “under-the-hood” systems-
programming experience.

Chapter 11—Artificial Intelligence Case Study: Natural Language Pro-
cessing (NLP)
Natural Language Processing (NLP) helps computers understand, analyze and pro-
cess text. One of its most common uses is sentiment analysis—determining whether
text has positive, neutral or negative sentiment. Another interesting use of NLP is
assessing text readability, which is affected by the vocabulary used, word lengths, sen-
tence structure, sentence lengths, topic and more. While writing this book, we used

 A Case Studies Tour xxxvii

the paid (NPL) tool Grammarly22 to help tune the writing and ensure the text’s read-
ability for a wide audience. Instructors who use the “flipped classroom” format prefer
textbooks that students can understand on their own.

Some people believe that the works of William Shakespeare actually might have
been written by Christopher Marlowe or Sir Francis Bacon among others.23,24 In the
NLP case study exercise, you’ll use array-, string- and file-processing techniques to per-
form simple similarity detection on Shakespeare’s Romeo and Juliet and Marlowe’s
Edward the Second to determine how alike they are. You may be surprised by the results.

Chapter 11—Artificial Intelligence Case Study: Machine Learning with
the GNU Scientific Library
Statistics can be deceiving. Dramatically different datasets can have identical or nearly
identical descriptive statistics. You’ll consider a famous example of this phenome-
non—Anscombe’s Quartet25—which consists of four datasets of x–y coordinate
pairs that differ significantly, yet have nearly identical descriptive statistics. You’ll
then study a completely coded example that uses the machine-learning technique
called simple linear regression to calculate the equation of a straight line (y = mx + b)
that, given a collection of points (x–y coordinate pairs) representing an independent
variable (x) and a dependent variable (y), describes the relationship between these vari-
ables with a straight line, known as the regression line. As you’ll see, the regression
lines for Anscombe’s Quartet are visually identical for all four quite different datasets.
The program you’ll study then passes commands to the open-source gnuplot pack-
age to create several attractive visualizations. gnuplot uses its own plotting language
different from C, so in our code, we provide extensive comments that explain its com-
mands. Finally, the case study asks you to run a simple linear regression on 126 years
of New York City average January temperature data to determine if there is a cool-
ing or warming trend. As part of this case study, you’ll also read comma-separated
values (CSV) text files containing the datasets.

Chapter 11—Web Services and the Cloud: Getting a Weather Report Using
libcurl and the OpenWeatherMap Web Services; Introducing Mashups
More and more computing today is done “in the cloud,” using software and data dis-
tributed across the Internet worldwide. The apps we use daily are heavily dependent
on various cloud-based services. A service that provides access to itself over the Inter-
net is known as a web service. In this case study exercise, you’ll work through a com-
pletely coded application that uses the open-source C library libcurl to invoke an

22. Grammarly has free and paid versions (https://www.grammarly.com). They provide free plug-
ins you can use in several popular web browsers.

23. “Did Shakespeare Really Write His Own Plays?” Accessed November 13, 2020. https://
www.history.com/news/did-shakespeare-really-write-his-own-plays.

24. “Shakespeare authorship question.” Accessed November 13, 2020. https://en.wikipedia.org/
wiki/Shakespeare_authorship_question.

25. “Anscombe’s quartet.” Accessed November 13, 2020. https://en.wikipedia.org/wiki/
Anscombe%27s_quartet.

https://www.grammarly.com
https://www.history.com/news/did-shakespeare-really-write-his-own-plays
https://en.wikipedia.org/wiki/Shakespeare_authorship_question
https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://www.history.com/news/did-shakespeare-really-write-his-own-plays
https://en.wikipedia.org/wiki/Shakespeare_authorship_question
https://en.wikipedia.org/wiki/Anscombe%27s_quartet

xxxviii Preface

OpenWeatherMap (free tier) web service that returns the current weather for a spec-
ified city. The web service returns results in JSON (JavaScript Object Notation) for-
mat, which we process using the open-source cJSON library.

This exercise opens a world of possibilities. You can explore nearly 24,000 web
services listed in the ProgrammableWeb26 web services directory. Many are free or
provide free tiers that you can use to create fun and interesting mashups that combine
complementary web services.

Chapter 12—Systems Software Case Study: Building Your Own Compiler
In the context of several exercises, you’ll build a simple compiler that translates pro-
grams written in a simple high-level programming language to our Simpletron
Machine Language (SML). You’ll write programs in this small new high-level lan-
guage, compile them on the compiler you build and run them on your Simpletron
simulator. And with Chapter 11, File Processing, your compiler can write the gen-
erated machine-language code into a file from which your Simpletron computer can
then read your SML program, load it into the Simpletron’s memory and execute it!
This is a nice end-to-end exercise sequence for novice computing students.

Chapter 13—Visualizing the High-Performance Merge Sort
A centerpiece of our sorting treatment is our implementation of the high-performance
merge sort algorithm. In that case study, you’ll use outputs to visualize the algorithm’s
partition and merge steps, which will help a user understand how the merge sort works.

Appendix C—Systems Architecture Case Study: Performance with Multi-
threading and Multicore Systems
Multithreading—which allows you to break a program into separate “threads” that
can be executed in parallel—has been around for many decades, but interest in it is
higher today due to the availability of multicore processors in computers and devices,
including smartphones and tablets. These processors economically implement multiple
processors on one integrated circuit chip. They put multiple cores to work executing
different parts of your program in parallel, thereby enabling the individual tasks and the
program as a whole to complete faster. Four and eight cores are common in many of
today’s devices, and the number of cores will continue to grow. We wrote and tested
the code for this book using an eight-core MacBook Pro. Multithreaded applications
enable you to execute separate threads simultaneously on multiple cores, so that you can
take the fullest advantage of multicore architecture.

For a convincing demonstration of the power of multithreading on a multicore
system, we present a case study with two programs. One performs two compute-
intensive calculations in sequence. The other executes the same compute-intensive
calculations in parallel threads. We time each calculation and determine the total
execution time in each program. The program outputs show the dramatic time
improvement when the multithreaded version executes on a multicore system.

26. “ProgrammableWeb.” Accessed November 22, 2020. https://programmableweb.com/.

https://programmableweb.com/

 Secure C Programming xxxix

Secure C Programming
The people responsible for the ACM/IEEE curricula guidelines emphasize the impor-
tance of security—it’s mentioned 395 times in the Computer Science Curricula
document and 235 times in the Information Technology Curricula document. In
2017, the ACM/IEEE published its Cybersecurity Curricula, which focuses on secu-
rity courses and security throughout the other computing curricula. That document
mentions security 865 times.

Chapters 2–12 and 14 each end with a Secure C Programming section. These are
designed to raise awareness among novice programming students of security issues that
could cause breaches. These sections present some key issues and techniques and pro-
vide links and references so you can continue learning. Our goal is to encourage you to
start thinking about security issues, even if this is your first programming course.

Experience has shown that it’s challenging to build industrial-strength systems
that stand up to attacks. Today, via the Internet, such attacks can be instantaneous
and global in scope. Software vulnerabilities often come from simple programming
issues. Building security into software from the start of the development cycle can sig-
nificantly reduce vulnerabilities.

The CERT Division of Carnegie Mellon’s Software Engineering Institute
https://www.sei.cmu.edu/about/divisions/cert/index.cfm

was created to analyze and respond promptly to attacks. They publish and promote
secure coding standards to help C programmers and others implement industrial-
strength systems that avoid the programming practices that leave systems vulnerable
to attacks. Their standards evolve as new security issues arise.

We explain how to upgrade your code (as appropriate for an introductory book)
to conform to the latest secure C coding recommendations. If you’re building C sys-
tems in industry, consider reading the SEI CERT C Coding Standard rules at

https://wiki.sei.cmu.edu/confluence/display/c

Also, consider reading Secure Coding in C and C++, 2/e by Robert Seacord
(Addison-Wesley Professional, 2013). Mr. Seacord, a technical reviewer for an earlier
edition of this book, provided specific recommendations on each of our Secure C
Programming sections. At the time, he was the Secure Coding Manager at CERT and
an adjunct professor at Carnegie Mellon’s School of Computer Science. He is now a
Technical Director at NCC Group (an IT Security company).

Our Secure C Programming sections discuss many important topics, including:

• Testing for Arithmetic Overflows

• The More Secure Functions in the C Standard’s Annex K

• The Importance of Checking the Status Information Returned by Standard-
Library Functions

• Range Checking

• Secure Random-Number Generation

https://www.sei.cmu.edu/about/divisions/cert/index.cfm
https://wiki.sei.cmu.edu/confluence/display/c

xl Preface

• Array Bounds Checking

• Preventing Buffer Overflows

• Input Validation

• Avoiding Undefined Behaviors

• Choosing Functions That Return Status Information vs. Using Similar Func-
tions That Do Not

• Ensuring That Pointers Are Always Null or Contain Valid Addresses

• Using C Functions vs. Using Preprocessor Macros, and More.

Computing and Data Science Curricula
This book is designed for courses that adhere to one or more of the following ACM/
IEEE CS-and-related curriculum documents:

• CC2020: Paradigms for Future Computing Curricula (cc2020.net),27

• Computer Science Curricula 2013,28

• Information Technology Curricula 2017,29

• Cybersecurity Curricula 2017.30

Computing Curricula
• According to “CC2020: A Vision on Computing Curricula,”31 the curricu-

lum “needs to be reviewed and updated to include the new and emerging areas
of computing such as cybersecurity and data science.”32 (See “Data Science
Overlaps with Computer Science” below and this Preface’s earlier “Secure C
Programming” section).

• Data science includes key topics (besides statistics and general-purpose pro-
gramming) such as machine learning, deep learning, natural language process-
ing, speech synthesis and recognition, and others that are classic artificial
intelligence (AI) topics—and hence CS topics as well. We cover machine
learning and natural language processing in the case studies.

27. “Computing Curricula 2020.” Accessed November 22, 2020. https://cc2020.nsparc.ms-
state.edu/wp-content/uploads/2020/11/Computing-Curricula-Report.pdf.

28. ACM/IEEE (Assoc. Comput. Mach./Inst. Electr. Electron. Eng.). 2013. Computer Science Curric-
ula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science (New
York: ACM), http://ai.stanford.edu/users/sahami/CS2013/final-draft/CS2013-final-
report.pdf.

29. Information Technology Curricula 2017, http://www.acm.org/binaries/content/assets/
education/it2017.pdf.

30. Cybersecurity Curricula 2017, https://cybered.hosting.acm.org/wp-content/uploads/
2018/02/newcover_csec2017.pdf.

31. A. Clear, A. Parrish, G. van der Veer and M. Zhang, “CC2020: A Vision on Computing Curric-
ula,” https://dl.acm.org/citation.cfm?id=3017690.

32. http://delivery.acm.org/10.1145/3020000/3017690/p647-clear.pdf.

https://cc2020.nsparc.msstate.edu/wp-content/uploads/2020/11/Computing-Curricula-Report.pdf
http://ai.stanford.edu/users/sahami/CS2013/final-draft/CS2013-final-report.pdf
http://www.acm.org/binaries/content/assets/education/it2017.pdf
https://cybered.hosting.acm.org/wp-content/uploads/2018/02/newcover_csec2017.pdf
https://dl.acm.org/citation.cfm?id=3017690
http://delivery.acm.org/10.1145/3020000/3017690/p647-clear.pdf
https://cc2020.nsparc.msstate.edu/wp-content/uploads/2020/11/Computing-Curricula-Report.pdf
http://ai.stanford.edu/users/sahami/CS2013/final-draft/CS2013-final-report.pdf
http://www.acm.org/binaries/content/assets/education/it2017.pdf
https://cybered.hosting.acm.org/wp-content/uploads/2018/02/newcover_csec2017.pdf

 Data Science Overlaps with Computer Science xli

Data Science Overlaps with Computer Science33

The undergraduate data science curriculum proposal34 includes algorithm develop-
ment, programming, computational thinking, data structures, database, mathematics,
statistical thinking, machine learning, data science and more—a significant overlap
with computer science, especially given that the data science courses include some key
AI topics. Even though ours is a C programming textbook, we work data science topics
into various examples, exercises, projects and case studies.

Key Points from the Data Science Curriculum Proposal
This section calls out some key points from the data science undergraduate curricu-
lum proposal and its detailed course descriptions appendix.35 Each of the following
items is covered in C How to Program, 9/e:

• Learn programming fundamentals commonly presented in computer sci-
ence courses, including working with data structures.

• Be able to solve problems by creating algorithms.

• Work with procedural programming.

• Explore concepts via simulations.

• Use development environments (we tested all our code on Microsft Visual
C++, Apple Xcode, the GNU command-line gcc compiler on Linux and in
the GNU Compiler Collection Docker container).

• Work with real-world data in practical case studies and projects—such as
William Shakespeare’s Romeo and Juliet and Christopher Marlowe’s Edward
the Second from Project Gutenberg (https://www.gutenberg.org/), and 126
years of New York City average January temperatures.

• Create data visualizations.

• Communicate reproducible results. (Docker plays an important role in
that—see the next page.)

• Work with existing software and cloud-based tools.

• Work with high-performance tools, such as C’s multithreading libraries.

• Focus on data’s ethics, security, privacy and reproducibility issues.

33. This section is intended primarily for data science instructors. Given that the emerging 2020
Computing Curricula for computer science and related disciplines is likely to include some key
data science topics, this section includes important information for computer science instruc-
tors as well.

34. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annual-
reviews.org/doi/full/10.1146/annurev-statistics-060116-053930.

35. “Appendix—Detailed Courses for a Proposed Data Science Major,” http://www.annualre-
views.org/doi/suppl/10.1146/annurev-statistics-060116-053930/suppl_file/
st04_de_veaux_supmat.pdf.

https://www.gutenberg.org/)
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-060116-053930/suppl_file/st04_de_veaux_supmat.pdf
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-060116-053930/suppl_file/st04_de_veaux_supmat.pdf

xlii Preface

Get the Code Examples and Install the Software
For your convenience, we provide the book’s examples in C source-code (.c) files for
use with integrated development environments (IDEs) and command-line compilers.
See the Before You Begin section that follows the Preface for software installation
details. See the Chapter 1 test-drives for information on running the book’s code
examples. If you encounter a problem, you can reach us at deitel@deitel.com or via
the contact form at https://deitel.com/contact-us.

Docker
We introduce Docker—a tool for packaging software into containers that bundle
everything required to execute that software conveniently, reproducibly and portably
across platforms. Some software packages you’ll use require complicated setup and
configuration. For many of these, you can download free preexisting Docker contain-
ers that help you avoid complex installation issues. You can simply execute software
locally on your desktop or notebook computers, making Docker a great way to help
you get started with new technologies quickly, conveniently and economically. For
your convenience, we show how to install and execute a Docker container that’s pre-
configured with the GNU Compiler Collection (GCC), which includes the gcc
compiler. This can run in Docker on Windows, macOS and Linux. It’s particularly
useful for people using Visual C++, which can compile C code but is not 100% com-
pliant with the latest C standard.

Docker also helps with reproducibility. Custom Docker containers can be con-
figured with every piece of software and every library you use. This would enable oth-
ers to recreate the environment you used, then reproduce your work, and will help
you reproduce your own results. Reproducibility is especially important in the sci-
ences and medicine—for example, when researchers want to prove and extend the
work in published articles.

Flipped Classrooms
Many instructors use “flipped classrooms.”36,37 Students learn the content on their
own before coming to class, and class time is used for tasks such as hands-on coding,
working in groups and discussions. Our book and supplements also are appropriate
for flipped classrooms:

• We use Grammarly to control the book’s reading level to help ensure it’s
appropriate for students learning on their own.

• In parallel with reading the text, students should execute the 147 live-code C
examples and do the 350+ integrated Self Check exercises, which are imme-

36. https://en.wikipedia.org/wiki/Flipped_classroom.
37. https://www.edsurge.com/news/2018-05-24-a-case-for-flipping-learning-without-

videos.

https://deitel.com/contact-us
https://en.wikipedia.org/wiki/Flipped_classroom
https://www.edsurge.com/news/2018-05-24-a-case-for-flipping-learning-without-videos
https://www.edsurge.com/news/2018-05-24-a-case-for-flipping-learning-without-videos
mailto:deitel@deitel.com

 Teaching Approach xliii

diately followed by their answers. These encourage active participation by
the student. They learn the content in small pieces using a “read-a-little, do-
a-little, test-a-little” approach—appropriate for a flipped classroom’s active,
self-paced, hands-on learning. Students are encouraged to modify the code
and see the effects of their changes.

• We provide 445 exercises and projects, which students can work on at home
and/or in class. Many of the exercises are at an elementary or intermediate
level that students should be able to do independently. And many are appro-
priate for group projects on which students can collaborate in class.

• Section-by-section detailed chapter summaries with bolded key terms help
students quickly review the material.

• In the book’s extensive index, the defining occurrences of key terms are high-
lighted with a bold page number, making it easy for students to find the intro-
ductions to the topics they’re studying. This facilitates the outside-the-
classroom learning experience of the flipped classroom.

A key aspect of flipped classrooms is getting your questions answered when you’re
working on your own. See the “Getting Your Questions Answered” section later in
this Preface for details. And you can always reach us at deitel@deitel.com.

Teaching Approach
C How to Program, 9/e contains a rich collection of examples, exercises, projects and
case studies drawn from many fields. Students solve interesting, real-world problems
working with real-world data. The book concentrates on the principles of good soft-
ware engineering and stresses program clarity.

Using Fonts for Emphasis
We place the key terms and the index’s page reference for each defining occurrence
in bold text for easier reference. C code uses a fixed-width font (e.g., x = 5). We place
on-screen components in the bold Helvetica font (e.g., the File menu).

Syntax Coloring
For readability, we syntax color all the code. In our full-color books and e-books, our
syntax-coloring conventions are as follows:

comments appear in green
keywords appear in dark blue
constants and literal values appear in light blue
errors appear in red
all other code appears in black

Objectives and Outline
Each chapter begins with objectives that tell you what to expect and give you an oppor-
tunity, after reading the chapter, to determine whether it has met the intended goals.
The chapter outline enables students to approach the material in a top-down fashion.

mailto:deitel@deitel.com

xliv Preface

Examples
The book’s 147 live-code examples contain thousands of lines of proven code.

Tables and Illustrations
Abundant tables and line drawings are included.

Programming Wisdom
We integrate into the text discussions programming wisdom and mistakes we’ve
accumulated from our combined nine decades of programming and teaching experi-
ence, and from the scores of academics and industry professionals who have reviewed
the nine editions of this book over the past 29 years, including:

• Good programming practices and preferred C idioms that help you produce
clearer, more understandable and more maintainable programs.

• Common programming errors to reduce the likelihood that you’ll make them.

• Error-prevention tips with suggestions for exposing bugs and removing them
from your programs. Many of these tips describe techniques for preventing
bugs from getting into your programs in the first place.

• Performance tips highlighting opportunities to make your programs run
faster or minimize the amount of memory they occupy.

• Software engineering observations highlighting architectural and design
issues for proper software construction, especially for larger systems.

• Security best practices that will help you strengthen your programs against
attacks.

Section-By-Section Chapter Summaries
To help students quickly review the material, each chapter ends with a detailed bullet-
list summary with bolded key terms and, for most, bold page references to their defin-
ing occurrences.

Free Software Used in the Book
The Before You Begin section following this Preface discusses installing the software
you’ll need to work with our examples. We tested C How to Program, 9/e’s examples
using the following popular free compilers:

• GNU gcc on Linux—which is already installed on most Linux systems and
can be installed on macOS and Windows systems.

• Microsoft’s Visual Studio Community Edition on Windows.

• Apple’s Clang compiler in Xcode on macOS.

GNU gcc in Docker
We also demonstrate GNU gcc in a Docker container—ideal for instructors who
want all their students to use GNU gcc, regardless of their operating system. This

ERR

PERF

SE

SEC

 C Documentation xlv

gives Visual C++ users a true C compiler option, since Visual C++ is not 100% com-
pliant with the latest C standard.

Windows Subsystem for Linux
The Windows Subsystem for Linux (WSL) enables Windows users to install Linux
and run it inside Windows. We provide a link to Microsoft’s step-by-step instructions
for setting up WSL and installing a Linux distribution. This provides yet another
option for Windows users to access the GNU gcc compiler.

C Documentation
You’ll find the following documentation helpful as you work through the book:

• The GNU C Standard Library Reference Manual:
 https://www.gnu.org/software/libc/manual/pdf/libc.pdf

• C Language Reference at cppreference.com
 https://en.cppreference.com/w/c

• C Standard Library Headers at cppreference.com
 https://en.cppreference.com/w/c/header

• Microsoft’s C Language Reference:
 https://docs.microsoft.com/en-us/cpp/c-language/c-language-

reference

Getting Your Questions Answered
Online forums enable you to interact with other C programmers worldwide and get
your questions answered. Popular C and general programming online forums include:

• https://stackoverflow.com

• https://www.reddit.com/r/C_Programming/

• https://groups.google.com/forum/#!forum/comp.lang.C

• https://cboard.cprogramming.com/c-programming/

• https://www.dreamincode.net/forums/forum/15-c-and-c/

For a list of other sites, see
https://www.geeksforgeeks.org/stuck-in-programming-get-the-

solution-from-these-10-best-websites/

Also, vendors often provide forums for their tools and libraries. Many libraries are
managed and maintained at github.com. Some library maintainers provide support
through the Issues tab on a given library’s GitHub page.

Student and Instructor Supplements
The following supplements are available to students and instructors.

https://www.gnu.org/software/libc/manual/pdf/libc.pdf
https://en.cppreference.com/w/c
https://en.cppreference.com/w/c/header
https://docs.microsoft.com/en-us/cpp/c-language/c-language-reference
https://stackoverflow.com
https://www.reddit.com/r/C_Programming/
https://cboard.cprogramming.com/c-programming/
https://www.dreamincode.net/forums/forum/15-c-and-c/
https://www.geeksforgeeks.org/stuck-in-programming-get-the-solution-from-these-10-best-websites/
https://groups.google.com/forum/#!forum/comp.lang.C

xlvi Preface

Web-Based Materials on deitel.com
To get the most out of your C How to Program, 9/e learning experience, you should
execute each code example in parallel with reading the corresponding discussion.
On the book’s web page at

https://deitel.com/c-how-to-program-9-e

we provide the following resources:

• Links to the downloadable C source code (.c files) for the book’s code exam-
ples and exercises that include code in the exercise description. You can also
get this from the book’s Pearson companion website at
 https://pearson.com/deitel

• Links to our Getting Started videos showing how to use the compilers and
code examples. We also introduce these tools in Chapter 1.

• Blog posts—https://deitel.com/blog.

• Book updates—https://deitel.com/c-how-to-program-9-e.

• “Using the Debugger” appendices for the Visual Studio, GNU gdb and
Xcode debuggers.

For more information about downloading the examples and setting up your C devel-
opment environment, see the Before You Begin section that follows this Preface.

Instructor Supplements
Pearson Education’s IRC (Instructor Resource Center)

http://www.pearsonhighered.com/irc

provides qualified instructors access to the following supplements for this book:

• PowerPoint Slides.

• Instructor Solutions Manual with solutions to most of the exercises. Solutions
are not provided for “project” and “research” exercises. Before assigning a par-
ticular exercise for homework, instructors should check the IRC to ensure
that the solution is available.

• Test Item File with four-part multiple-choice, short-answer questions and
answers. You may also request from your Pearson representative (https://
pearson.com/replocator) versions of the Test Item File for use with popular
automated assessment tools.

Please do not write to us requesting access to the Pearson Instructor’s Resource
Center (IRC). Access to the instructor supplements and exercise solutions on the IRC
is strictly limited by our publisher to college instructors who adopt the book for their
classes. Instructors may obtain access through their Pearson representatives. If you’re
not a registered faculty member, contact your Pearson representative or visit

https://pearson.com/replocator

Instructors can request examination copies of Deitel books from their Pearson rep-
resentatives.

https://deitel.com/c-how-to-program-9-e
https://pearson.com/deitel
https://deitel.com/blog
https://deitel.com/c-how-to-program-9-e
http://www.pearsonhighered.com/irc
https://pearson.com/replocator
https://pearson.com/replocator
https://pearson.com/replocator

 Communicating with the Authors xlvii

Communicating with the Authors
For questions, instructor syllabus assistance or to report an error, we’re easy to reach at

deitel@deitel.com

or via the contact form at
https://deitel.com/contact-us

Interact with us via social media on

• Facebook®—https://facebook.com/DeitelFan

• Twitter®—@deitel or https://twitter.com/deitel

• LinkedIn®—https://linkedin.com/company/deitel-&-associates

• YouTube®—https://youtube.com/DeitelTV

Deitel Pearson Products on O’Reilly Online Learning
O’Reilly Online Learning subscribers have access to many Deitel Pearson textbooks,
professional books, LiveLessons videos and Full Throttle one-day webinars. Sign up
for a 10-day free trial at

https://deitel.com/LearnWithDeitel

Textbooks and Professional Books
Each Deitel e-book on O’Reilly Online Learning is presented in full color and exten-
sively indexed.

Asynchronous LiveLessons Video Products
Learn hands-on with Paul Deitel as he presents compelling, leading-edge computing
technologies in Python, Python Data Science/AI and Java. C++20 and C are coming
in 2021.

Live Full Throttle Webinars
Paul Deitel offers Full Throttle webinars at O’Reilly Online Learning. These are
one-full-day, fast-paced, code-intensive introductions to Python, Python Data Sci-
ence/AI and Java, with C++20 and C coming in 2021. Paul’s Full Throttle webinars
are for experienced developers and software project managers preparing for projects
using other languages. After taking a Full Throttle course, participants often take the
corresponding LiveLessons video course which has many more hours of classroom-
paced learning.

Acknowledgments
We’d like to thank Barbara Deitel for long hours devoted to Internet research on this
project. We’re fortunate to have worked with the dedicated team of publishing pro-
fessionals at Pearson. We appreciate the guidance, wisdom and energy of Tracy John-
son (Pearson Education, Global Content Manager, Computer Science)—on all our

https://deitel.com/contact-us
https://facebook.com/DeitelFan
https://twitter.com/deitel
https://youtube.com/DeitelTV
https://deitel.com/LearnWithDeitel
mailto:deitel@deitel.com
https://linkedin.com/company/deitel-&-associates

xlviii Preface

academic publications, both print and digital. She challenges us at every step of the
process to “get it right” and make the best books. Carole Snyder managed the book’s
production and interacted with Pearson’s permissions team, promptly clearing our
graphics and citations to keep the book on schedule. Erin Sullivan recruited and man-
aged the book’s review team. We selected the cover art, and Chuti Prasertsith
designed the cover, adding his special touch of graphics magic.

We wish to acknowledge the efforts of our academic and professional reviewers.
Adhering to a tight schedule, the reviewers scrutinized the manuscript, providing
countless suggestions for improving the presentation’s accuracy, completeness and
timeliness. They helped us make a better book.

A special thanks to Prof. Alison Clear, an Associate Professor in the School of
Computing at Eastern Institute of Technology (EIT) in New Zealand and co-chair
of the Computing Curricula 2020 (CC2020) Task Force, which recently released
new computing curricula recommendations:

Reviewers

C How to Program, 9/e Reviewers
Dr. Danny Kalev (Ben-Gurion University of the

Negev, A Certified System Analyst, C Expert and
Former Member of the C++ Standards Committee)

José Antonio González Seco (Parliament of Andalusia)

C How to Program, 8/e Reviewers
Dr. Brandon Invergo (GNU/European Bioinfor-

matics Institute)
Jim Hogg (Program Manager, C/C++ Compiler

Team, Microsoft Corporation)
José Antonio González Seco (Parliament of Andalusia)
Alan Bunning (Purdue University)
Paul Clingan (Ohio State University)
Michael Geiger (University of Massachusetts, Lowell)
Dr. Danny Kalev (Ben-Gurion University of the

Negev, A Certified System Analyst, C Expert and
Former Member of the C++ Standards Committee)

Jeonghwa Lee (Shippensburg University)
Susan Mengel (Texas Tech University)
Judith O'Rourke (SUNY at Albany)
Chen-Chi Shin (Radford University)

Other Recent Editions Reviewers (and their affilia-
tions at the time)

William Albrecht (University of South Florida)
Ian Barland (Radford University)

Ed James Beckham (Altera)
John Benito (Blue Pilot Consulting, Inc. and Con-

vener of ISO WG14—the Working Group
responsible for the C Programming Language
Standard)

Dr. John F. Doyle (Indiana University Southeast)
Alireza Fazelpour (Palm Beach Community College)
Mahesh Hariharan (Microsoft)
Hemanth H.M. (Software Engineer at SonicWALL)
Kevin Mark Jones (Hewlett Packard)
Lawrence Jones, (UGS Corp.)
Don Kostuch (Independent Consultant)
Vytautus Leonavicius (Microsoft)
Xiaolong Li (Indiana State University)
William Mike Miller (Edison Design Group, Inc.)
Tom Rethard (The University of Texas at Arlington)
Robert Seacord (Secure Coding Manager at SEI/

CERT, author of The CERT C Secure Coding
Standard and technical expert for the interna-
tional standardization working group for the pro-
gramming language C)

Benjamin Seyfarth (University of Southern Missis-
sippi)

Gary Sibbitts (St. Louis Community College at
Meramec)

William Smith (Tulsa Community College)
Douglas Walls (Senior Staff Engineer, C compiler,

Sun Microsystems—now Oracle).

 About the Authors xlix

Computing Curricula 2020: Paradigms for Future Computing Curricula
https://cc2020.nsparc.msstate.edu/wp-content/uploads/2020/11/

Computing-Curricula-Report.pdf

Prof. Clear graciously answered our questions.
And finally, a special note of thanks to the enormous numbers of technically ori-

ented people worldwide who contribute to the open-source movement and write
about their work online, to their organizations that encourage the proliferation of
such open software and information, and to Google, whose search engine answers our
constant stream of questions, each in a fraction of a second, at any time day or
night—and at no charge.

Well, there you have it! As you read the book, we’d appreciate your comments,
criticisms, corrections and suggestions for improvement. Please send all correspon-
dence, including questions, to

deitel@deitel.com

We’ll respond promptly. Welcome to the exciting world of C programming for the
2020s. We hope you have an informative, entertaining and challenging learning
experience with C How to Program, 9/e and enjoy this look at leading-edge software
development with C. We wish you great success!

Paul Deitel
Harvey Deitel

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is an
MIT graduate with 41 years of experience in computing. Paul is one of the world’s
most experienced programming-languages trainers, having taught professional
courses to software developers since 1992. He has delivered hundreds of program-
ming courses to academic, industry, government and military clients internationally,
including UCLA, Cisco, IBM, Siemens, Sun Microsystems (now Oracle), Dell,
Fidelity, NASA at the Kennedy Space Center, the National Severe Storm Laboratory,
White Sands Missile Range, Rogue Wave Software, Boeing, Nortel Networks, Puma,
iRobot and many more. He and his co-author, Dr. Harvey M. Deitel, are among the
world’s best-selling programming-language textbook, professional book, video and
interactive multimedia e-learning authors, and virtual- and live-training presenters.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associ-
ates, Inc., has 59 years of experience in computing. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Bos-
ton University—he studied computing in each of these programs before they spun
off Computer Science programs. He has extensive college teaching experience,
including earning tenure and serving as the Chairman of the Computer Science
Department at Boston College before founding Deitel & Associates, Inc., in 1991
with his son, Paul. The Deitels’ publications have earned international recognition,

https://cc2020.nsparc.msstate.edu/wp-content/uploads/2020/11/Computing-Curricula-Report.pdf
mailto:deitel@deitel.com

l Preface

with more than 100 translations published in Japanese, German, Russian, Spanish,
French, Polish, Italian, Simplified Chinese, Traditional Chinese, Korean, Portu-
guese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of programming
courses to academic, corporate, government and military clients.

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an interna-
tionally recognized authoring and corporate-training organization, specializing in
computer programming languages, object technology, mobile app development and
Internet and web software technology. The company’s training clients include some
of the world’s largest companies, government agencies, branches of the military, and
academic institutions. The company offers instructor-led training courses delivered
virtually and live at client sites worldwide, and for Pearson Education on O’Reilly
Online Learning.

Through its 45-year publishing partnership with Pearson/Prentice Hall, Deitel &
Associates, Inc., publishes leading-edge programming textbooks and professional books
in print and e-book formats, LiveLessons video courses, O’Reilly Online Learning live
webinars and Revel™ interactive multimedia college courses.

To contact Deitel & Associates, Inc. and the authors, or to request a proposal for
virtual or on-site, instructor-led training worldwide, write to

deitel@deitel.com

To learn more about Deitel on-site corporate training, visit
https://deitel.com/training

Individuals wishing to purchase Deitel books can do so at
https://amazon.com

Bulk orders by corporations, the government, the military and academic institutions
should be placed directly with Pearson. For corporate and government sales, send an
email to

corpsales@pearsoned.com

For textbook orders visit
https://pearson.com

Deitel e-books are available in various formats from
https://www.amazon.com/ https://www.vitalsource.com/

https://www.bn.com/ https://www.redshelf.com/

https://www.informit.com/ https://www.chegg.com/

To register for a free 10-day trial to O’Reilly Online Learning, visit
https://deitel.com/LearnWithDeitel

which will forward you to our O’Reilly Online Learning landing page. On that page,
click the Begin a free trial link.

https://deitel.com/training
https://amazon.com
https://pearson.com
https://www.amazon.com/
https://www.vitalsource.com/
https://www.bn.com/
https://www.redshelf.com/
https://www.informit.com/
https://www.chegg.com/
https://deitel.com/LearnWithDeitel
mailto:deitel@deitel.com
mailto:corpsales@pearsoned.com

Before using this book, please read this section to understand our conventions and
ensure that your computer can compile and run our example programs.

Font and Naming Conventions
We use fonts to distinguish application elements and C++ code elements from regular
text. For on-screen application elements, we use a sans-serif bold font, as in the File
menu. For C code elements, we use a sans-serif font, as in sqrt(9).

Obtaining the Code Examples
We maintain the code examples for C How to Program, 9/e in a GitHub repository.
The book’s web page
 https://deitel.com/c-how-to-program-9-e

includes a link to the repository and a link to a ZIP file containing the code. If you
download the ZIP file, be sure to extract its contents once the download completes.
In our instructions, we assume the examples reside in your user account’s Documents
folder in a subfolder named examples.

If you’re not familiar with Git and GitHub but are interested in learning about
these essential developer tools, check out their guides at
 https://guides.github.com/activities/hello-world/

Compilers We Use in C How to Program, 9/e
We tested C How to Program, 9/e’s examples using the following free compilers:

• For Microsoft Windows, we used Microsoft Visual Studio Community edi-
tion1, which includes the Visual C++ compiler and other Microsoft develop-
ment tools. Visual C++ can compile C code.

• For macOS, we used Apple Xcode, which includes the Clang C compiler.
Command-line Clang also can be installed on Linux and Windows Systems.

• For Linux, we used the GNU gcc compiler—part of the GNU Compiler Col-
lection (GCC). GNU gcc is already installed on most Linux systems and can
be installed on macOS and Windows systems.

1. At the time of this writing, the current version was Visual Studio 2019 Community edition.

Before You
Begin

https://deitel.com/c-how-to-program-9-e
https://guides.github.com/activities/hello-world/

lii Before You Begin

This Before You Begin section describes installing the compilers. Section 1.10’s test-
drives demonstrate how to compile and run C programs using these compilers.

Before You Begin Videos
To help you get started with each of our preferred compilers, we provide Before You
Begin videos at:

https://deitel.com/c-how-to-program-9-e

We also provide a Before You Begin video demonstrating how to install the GNU
GCC Docker container. This enables you to use the gcc compiler on any Docker-
enabled computer.2 See the section, “Docker and the GNU Compiler Collection
(GCC) Docker Container” later in this Before You Begin section.

Installing Visual Studio Community Edition on Windows
If you use Windows, first ensure that your system meets the requirements for Micro-
soft Visual Studio Community edition at:

https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-
requirements

Next, go to:
https://visualstudio.microsoft.com/downloads/

then perform the following installation steps:

1. Click Free download under Community.

2. Depending on your web browser, you may see a pop-up at the bottom of your
screen in which you can click Run to start the installation process. If not, dou-
ble-click the installer file in your Downloads folder.

3. In the User Account Control dialog, click Yes to allow the installer to make
changes to your system.

4. In the Visual Studio Installer dialog, click Continue to allow the installer to
download the components it needs for you to configure your installation.

5. For this book’s examples, select the option Desktop Development with C++,
which includes the Visual C++ compiler and the C and C++ standard libraries.

6. Click Install. Depending on your Internet connection speed, the installation
process can take a significant amount of time.

Installing Xcode on macOS
On macOS, perform the following steps to install Xcode:

1. Click the Apple menu and select App Store…, or click the App Store icon in
the dock at the bottom of your Mac screen.

2. “Docker Frequently Asked Questions (FAQ).” Accessed January 3, 2021. https://docs.dock-
er.com/engine/faq/.

https://deitel.com/c-how-to-program-9-e
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://visualstudio.microsoft.com/downloads/
https://docs.docker.com/engine/faq/
https://docs.docker.com/engine/faq/

 Installing GNU gcc on Linux liii

2. In the App Store’s Search field, type Xcode.

3. Click the Get button to install Xcode.

Installing GNU gcc on Linux
Most Linux users already have a recent version of GNU gcc installed. To check, open
a shell or Terminal window on your Linux system, then enter the command

gcc --version

If it does not recognize the command, you must install GNU gcc. We use the
Ubuntu Linux distribution. On that distribution, you must be logged in as an admin-
istrator or have the administrator password to execute the following commands:

1. sudo apt update

2. sudo apt install build-essential gdb

Linux distributions often use different software installation and upgrade tech-
niques. If you are not using Ubuntu Linux, search online for “Install GCC on MyLi-
nuxDistribution” and replace MyLinuxDistribution with your Linux version. You can
download the GNU Compiler Collection for various platforms at:

https://gcc.gnu.org/install/binaries.html

Installing GNU GCC in Ubuntu Linux Running on the Win-
dows Subsystem for Linux
Another way to install GNU gcc on Windows is via the Windows Subsystem for
Linux (WSL), which enables you to run Linux on Windows. Ubuntu Linux provides
an easy-to-use installer in the Windows Store, but first you must install WSL:

1. In the search box on your taskbar, type “Turn Windows features on or off,”
then click Open in the search results.

2. In the Windows Features dialog, locate Windows Subsystem for Linux and en-
sure that it is checked. If it is, WSL is already installed. Otherwise, check it
and click OK. Windows will install WSL and ask you to reboot your system.

3. Once the system reboots and you log in, open the Microsoft Store app and
search for Ubuntu, select the app named Ubuntu and click Install. This installs
the latest version of Ubuntu Linux.

4. Once installed, click the Launch button to display the Ubuntu Linux com-
mand-line window, which will continue the installation process. You’ll be
asked to create a username and password for your Ubuntu installation—these
do not need to match your Windows username and password.

5. When the Ubuntu installation completes, execute the following two com-
mands to install the GCC and the GNU debugger—you may be asked enter
your Ubuntu password for the account you created in Step 6:
 sudo apt-get update
 sudo apt-get install build-essential gdb

https://gcc.gnu.org/install/binaries.html

liv Before You Begin

6. Confirm that gcc is installed by executing the following command:
 gcc --version

To access our code files, use the cd command change the folder within Ubuntu to:

cd /mnt/c/Users/YourUserName/Documents/examples

Use your own user name and update the path to where you placed our examples on
your system.

GNU Compiler Collection (GCC) Docker Container
Docker is a tool for packaging software into containers (also called images) that bundle
everything required to execute software across platforms. Docker is particularly useful
for software packages with complicated setups and configurations. You typically can
download preexisting Docker containers (often at https://hub.docker.com) for free
and execute them locally on your desktop or notebook computer. This makes Docker
a great way to get started with new technologies quickly and conveniently.

Docker makes it easy to use the GNU Compiler Collection on most versions of
Windows 10, and on macOS and Linux. The GNU Docker containers are located at

https://hub.docker.com/_/gcc

Installing Docker
To use the GCC Docker container, first install Docker. Windows (64-bit)3 and
macOS users should download and run the Docker Desktop installer from:

https://www.docker.com/get-started

then follow the on-screen instructions. Linux users should install Docker Engine from:
https://docs.docker.com/engine/install/

Also, sign up for a Docker Hub account on this webpage so you can install pre-config-
ured containers from https://hub.docker.com.

Downloading the Docker Container
Once Docker is installed and running, open a Command Prompt (Windows), Ter-
minal (macOS/Linux) or shell (Linux), then execute the command:

docker pull gcc:latest

Docker downloads the GNU Compiler Collection (GCC) container’s current ver-
sion.4 In one of Section 1.10’s test-drives, we’ll demonstrate how to execute the con-
tainer and use it to compile and run C programs.

3. If you have Windows Home (64-bit), follow the instructions at https://docs.docker.com/
docker-for-windows/install-windows-home/.

4. At the time of this writing, the current version of the GNU Compiler Collection is 10.2.

https://hub.docker.com
https://hub.docker.com/_/gcc
https://www.docker.com/get-started
https://docs.docker.com/engine/install/
https://hub.docker.com
https://docs.docker.com/docker-for-windows/install-windows-home/
https://docs.docker.com/docker-for-windows/install-windows-home/

1Introduction to Computers
and C

O b j e c t i v e s
In this chapter, you’ll:
■ Learn about exciting recent

developments in computing.
■ Learn computer hardware,

software and Internet basics.
■ Understand the data hierarchy

from bits to databases.
■ Understand the different types

of programming languages.
■ Understand the strengths of C

and other leading
programming languages.

■ Be introduced to the C
standard library of reusable
functions that help you avoid
“reinventing the wheel.”

■ Test-drive a C program that
you compile with one or more
of the popular C compilers we
used to develop the book’s
hundreds of C code examples,
exercises and projects (EEPs).

■ Be introduced to big data and
data science.

■ Be introduced to artificial
intelligence—a key
intersection of computer
science and data science.

2 Chapter 1 Introduction to Computers and C

O
ut

lin
e

1.1 Introduction
Welcome to C—one of the world’s most senior computer programming languages
and, according to the Tiobe Index, the world’s most popular.1 You’re probably famil-
iar with many of the powerful tasks computers perform. In this textbook, you’ll get
intensive, hands-on experience writing C instructions that command computers to
perform those and other tasks. Software (that is, the C instructions you write, which
are also called code) controls hardware (that is, computers and related devices).

1.1 Introduction
1.2 Hardware and Software

1.2.1 Moore’s Law
1.2.2 Computer Organization

1.3 Data Hierarchy
1.4 Machine Languages, Assembly

Languages and High-Level
Languages

1.5 Operating Systems
1.6 The C Programming Language
1.7 The C Standard Library and Open-

Source Libraries
1.8 Other Popular Programming

Languages
1.9 Typical C Program-Development

Environment
1.9.1 Phase 1: Creating a Program
1.9.2 Phases 2 and 3: Preprocessing and

Compiling a C Program
1.9.3 Phase 4: Linking
1.9.4 Phase 5: Loading
1.9.5 Phase 6: Execution
1.9.6 Problems That May Occur at

Execution Time
1.9.7 Standard Input, Standard Output

and Standard Error Streams
1.10 Test-Driving a C Application in

Windows, Linux and macOS

1.10.1 Compiling and Running a C
Application with Visual Studio 2019
Community Edition on Windows 10

1.10.2 Compiling and Running a C
Application with Xcode on macOS

1.10.3 Compiling and Running a C
Application with GNU gcc on Linux

1.10.4 Compiling and Running a C
Application in a GCC Docker
Container Running Natively over
Windows 10, macOS or Linux

1.11 Internet, World Wide Web, the
Cloud and IoT

1.11.1 The Internet: A Network of
Networks

1.11.2 The World Wide Web: Making the
Internet User-Friendly

1.11.3 The Cloud
1.11.4 The Internet of Things

1.12 Software Technologies
1.13 How Big Is Big Data?

1.13.1 Big-Data Analytics
1.13.2 Data Science and Big Data Are

Making a Difference: Use Cases
1.14 Case Study—A Big-Data Mobile

Application
1.15 AI—at the Intersection of

Computer Science and Data
Science

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1. “TIOBE Index.” Accessed November 4, 2020. https://www.tiobe.com/tiobe-index/.

https://www.tiobe.com/tiobe-index/

1.1 Introduction 3

C is widely used in industry for a wide range of tasks.2 Today’s popular desktop
operating systems—Windows3, macOS4 and Linux5—are partially written in C.
Many popular applications are partially written in C, including popular web browsers
(e.g., Google Chrome6 and Mozilla Firefox7), database management systems (e.g.,
Microsoft SQL Server8, Oracle9 and MySQL10) and more.

In this chapter, we introduce terminology and concepts that lay the groundwork
for the C programming you’ll learn, beginning in Chapter 2. We’ll introduce hard-
ware and software concepts. We’ll also overview the data hierarchy—from individual
bits (ones and zeros) to databases, which store the massive amounts of data that orga-
nizations need to implement contemporary applications such as Google Search, Net-
flix, Twitter, Waze, Uber, Airbnb and a myriad of others.

We’ll discuss the types of programming languages. We’ll introduce the C stan-
dard library and various C-based “open-source” libraries that help you avoid “rein-
venting the wheel.” You’ll use these libraries to perform powerful tasks with modest
numbers of instructions. We’ll introduce additional software technologies that you’re
likely to use as you develop software in your career.

Many development environments are available in which you can compile, build
and run C applications. You’ll work through one or more of the four test-drives
showing how to compile and execute C code using:

• Microsoft Visual Studio 2019 Community edition for Windows.

• Clang in Xcode on macOS.

• GNU gcc in a shell on Linux.

• GNU gcc in a shell running inside the GNU Compiler Collection (GCC)
Docker container.

You can read only the test-drive(s) required for your course or projects in industry.
In the past, most computer applications ran on “standalone” computers (that is,

not networked together). Today’s applications can communicate among the world’s
computers via the Internet. We’ll introduce the Internet, the World Wide Web, the
Cloud and the Internet of Things (IoT), each of which could play a significant part
in the applications you’ll build in the 2020s (and probably long afterward).

2. “After All These Years, the World is Still Powered by C Programming.” Accessed Nov. 4, 2020.
https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-
c-programming.

3. “What Programming Language is Windows written in?” Accessed Nov. 4, 2020. https://
social.microsoft.com/Forums/en-US/65a1fe05-9c1d-48bf-bd40-148e6b3da9f1/what-
programming-language-is-windows-written-in.

4. “macOS.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/MacOS.
5. “Linux kernel.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/Linux_kernel.
6. “Google Chrome.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/Google_Chrome.
7. “Firefox.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/Firefox.
8. “Microsoft SQL Server.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/Micro-

soft_SQL_Server.
9. “Oracle Database.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/Oracle_Database.
10. “MySQL.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/MySQL.

https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-programming
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Google_Chrome
https://en.wikipedia.org/wiki/Firefox
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://en.wikipedia.org/wiki/Oracle_Database
https://social.microsoft.com/Forums/en-US/65a1fe05-9c1d-48bf-bd40-148e6b3da9f1/what-programming-language-is-windows-written-in
https://social.microsoft.com/Forums/en-US/65a1fe05-9c1d-48bf-bd40-148e6b3da9f1/what-programming-language-is-windows-written-in
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://en.wikipedia.org/wiki/MySQL

4 Chapter 1 Introduction to Computers and C

1.2 Hardware and Software
Computers can perform calculations and make logical decisions phenomenally faster
than human beings can. Today’s personal computers and smartphones can perform
billions of calculations in one second—more than a human can perform in a lifetime.
Supercomputers already perform thousands of trillions (quadrillions) of instructions
per second! As of December 2020, Fujitsu’s Fugaku11 is the world’s fastest supercom-
puter—it can perform 442 quadrillion calculations per second (442 petaflops)!12 To
put that in perspective, this supercomputer can perform in one second almost 58 million
calculations for every person on the planet!13 And supercomputing upper limits are
growing quickly.

Computers process data under the control of sequences of instructions called
computer programs (or simply programs). These programs guide the computer
through ordered actions specified by people called computer programmers.

A computer consists of various physical devices referred to as hardware—such as
the keyboard, screen, mouse, solid-state disks, hard disks, memory, DVD drives and
processing units. Computing costs are dropping dramatically due to rapid develop-
ments in hardware and software technologies. Computers that might have filled large
rooms and cost millions of dollars decades ago are now inscribed on silicon computer
chips smaller than a fingernail, costing perhaps a few dollars each. Ironically, silicon
is one of the most abundant materials on Earth—it’s an ingredient in common sand.
Silicon-chip technology has made computing so economical that computers and
computerized devices have become commodities.

1.2.1 Moore’s Law
Every year, you probably expect to pay at least a little more for most products and
services. The opposite has been the case in the computer and communications fields,
especially with regard to the hardware supporting these technologies. Over the years,
hardware costs have fallen rapidly.

For decades, every couple of years, computer processing power approximately
doubled inexpensively. This remarkable trend often is called Moore’s Law, named for
Gordon Moore, co-founder of Intel and the person who identified this trend in the
1960s. Intel is a leading manufacturer of the processors in today’s computers and
embedded systems, such as smart home appliances, home security systems, robots,
intelligent traffic intersections and more.

11. “Top 500.” Accessed December 24, 2020. https://en.wikipedia.org/wiki/TOP500#TOP_500.
12. “Flops.” Accessed November 1, 2020. https://en.wikipedia.org/wiki/FLOPS.
13. For perspective on how far computing performance has come, consider this: In his early com-

puting days in the 1960s, Harvey Deitel used the Digital Equipment Corporation PDP-1
(https://en.wikipedia.org/wiki/PDP-1), which was capable of performing only 93,458 op-
erations per second, and the IBM 1401 (http://www.ibm-1401.info/1401GuidePos-
terV9.html), which performed only 86,957 operations per second.

https://en.wikipedia.org/wiki/TOP500#TOP_500
https://en.wikipedia.org/wiki/PDP-1)
http://www.ibm-1401.info/1401GuidePos-terV9.html
https://en.wikipedia.org/wiki/FLOPS
http://www.ibm-1401.info/1401GuidePos-terV9.html

1.2 Hardware and Software 5

Key executives at computer-processor companies NVIDIA and Arm have indi-
cated that Moore’s Law no longer applies.14,15 Computer processing power continues
to increase but relies on new processor designs, such as multicore processors
(Section 1.2.2).

Moore’s Law and related observations apply especially to

• the amount of memory that computers have for programs,

• the amount of secondary storage (such as hard disks and solid-state drive stor-
age) they have to hold programs and data, and

• their processor speeds—that is, the speeds at which computers execute pro-
grams to do their work.

Similar growth has occurred in the communications field. Costs have plummeted
as enormous demand for communications bandwidth (that is, information-carrying
capacity) has attracted intense competition. We know of no other fields in which
technology improves so quickly, and costs fall so rapidly. Such phenomenal improve-
ment is truly fostering the Information Revolution.

1.2.2 Computer Organization
Regardless of physical differences, computers can be envisioned as divided into vari-
ous logical units or sections.

Input Unit
This “receiving” section obtains information (data and computer programs) from
input devices and places it at the other units’ disposal for processing. Computers
receive most user input through keyboards, touch screens, mice and touchpads.
Other forms of input include:

• receiving voice commands,

• scanning images and barcodes,

• reading data from secondary storage devices (such as solid-state drives, hard
drives, Blu-ray Disc™ drives and USB flash drives—also called “thumb
drives” or “memory sticks”),

• receiving video from a webcam,

• receiving information from the Internet (such as when you stream videos
from YouTube® or download e-books from Amazon),

• receiving position data from a GPS device,

• receiving motion and orientation information from an accelerometer (a
device that responds to up/down, left/right and forward/backward accelera-

14. “Moore’s Law turns 55: Is it still relevant?” Accessed November 2, 2020. https://www.techre-
public.com/article/moores-law-turns-55-is-it-still-relevant.

15. “Moore’s Law is dead: Three predictions about the computers of tomorrow.” Accessed Novem-
ber 2, 2020. https://www.techrepublic.com/article/moores-law-is-dead-three-pre-
dictions-about-the-computers-of-tomorrow/.

https://www.techrepublic.com/article/moores-law-turns-55-is-it-still-relevant
https://www.techrepublic.com/article/moores-law-is-dead-three-predictions-about-the-computers-of-tomorrow/
https://www.techrepublic.com/article/moores-law-turns-55-is-it-still-relevant
https://www.techrepublic.com/article/moores-law-is-dead-three-predictions-about-the-computers-of-tomorrow/

6 Chapter 1 Introduction to Computers and C

tion) in a smartphone or wireless game controllers, such as those for Micro-
soft® Xbox®, Nintendo Switch™ and Sony® PlayStation®, and

• receiving voice input from intelligent assistants like Apple Siri®, Amazon
Alexa® and Google Home®.

Output Unit
This “shipping” section takes information the computer has processed and places it
on various output devices to make it available outside the computer. Most informa-
tion that’s output from computers today is

• displayed on screens,

• printed on paper (“going green” discourages this),

• played as audio or video on smartphones, tablets, PCs and giant screens in
sports stadiums,

• transmitted over the Internet, or

• used to control other devices, such as self-driving cars (and autonomous vehi-
cles in general), robots and “intelligent” appliances.

Information is also commonly output to secondary storage devices, such as solid-
state drives (SSDs), hard drives, USB flash drives and DVD drives. Popular recent
forms of output are smartphone and game-controller vibration, virtual reality devices
like Oculus Rift®, Oculus Quest®, Sony® PlayStation® VR and Samsung Gear VR®,
and mixed reality devices like Magic Leap® One and Microsoft HoloLens™.

Memory Unit
This rapid-access, relatively low-capacity “warehouse” section retains information
entered through the input unit, making it immediately available for processing when
needed. The memory unit also retains processed information until it can be placed on
output devices by the output unit. Information in the memory unit is volatile—it’s typ-
ically lost when the computer’s power is turned off. The memory unit is often called
either memory, primary memory or RAM (Random Access Memory). Main memories
on desktop and notebook computers contain as much as 128 GB of RAM, though 8 to
16 GB is most common. GB stands for gigabytes; a gigabyte is approximately one bil-
lion bytes. A byte is eight bits. A bit (short for “binary digit”) is either a 0 or a 1.

Arithmetic and Logic Unit (ALU)
This “manufacturing” section performs calculations (e.g., addition, subtraction, mul-
tiplication and division) and makes decisions (e.g., comparing two items from the
memory unit to determine whether they’re equal). In today’s systems, the ALU is part
of the next logical unit, the CPU.

Central Processing Unit (CPU)
This “administrative” section coordinates and supervises the operation of the other
sections. The CPU tells

1.2 Hardware and Software 7

• the input unit when to read information into the memory unit,

• the ALU when to use information from the memory unit in calculations, and

• the output unit when to send information from the memory unit to specific
output devices.

Most computers today have multicore processors that economically implement mul-
tiple processors on a single integrated circuit chip. Such processors can perform many
operations simultaneously. A dual-core processor has two CPUs, a quad-core proces-
sor has four and an octa-core processor has eight. Intel has some processors with up
to 72 cores.

Secondary Storage Unit
This is the long-term, high-capacity “warehousing” section. Programs and data not
actively being used by the other units are placed on secondary storage devices until
they’re again needed, possibly hours, days, months or even years later. Information on
secondary storage devices is persistent—it’s preserved even when the computer’s
power is turned off. Secondary storage information takes much longer to access than
information in primary memory, but its cost per byte is much less. Examples of sec-
ondary storage devices include solid-state drives (SSDs), USB flash drives, hard drives
and read/write Blu-ray drives. Many current drives hold terabytes (TB) of data. A tera-
byte is approximately one trillion bytes. Typical desktop and notebook-computer hard
drives hold up to 4 TB, and some recent desktop-computer hard drives hold up to 20
TB.16 The largest commercial SSD holds up to 100 TB (and costs $40,000).17

Self Check
1 (Fill-In) For many decades, every year or two, computers’ capacities have approx-
imately doubled inexpensively. This remarkable trend often is called .
Answer: Moore’s Law.

2 (True/False) Information in the memory unit is persistent—it’s preserved even
when the computer’s power is turned off
Answer: False. Information in the memory unit is volatile—it’s typically lost when
the computer’s power is turned off.

3 (Fill-In) Most computers today have processors that implement multi-
ple processors on a single integrated-circuit chip. Such processors can perform many
operations simultaneously.
Answer: multicore.

16. “History of hard disk drives.” Accessed November 1, 2020. https://en.wikipedia.org/wiki/
History_of_hard_disk_drives.

17. “At 100TB, the world’s biggest SSD gets an (eye-watering) price tag.” Accessed November 1,
2020. https://www.techradar.com/news/at-100tb-the-worlds-biggest-ssd-gets-an-
eye-watering-price-tag.

https://en.wikipedia.org/wiki/History_of_hard_disk_drives
https://www.techradar.com/news/at-100tb-the-worlds-biggest-ssd-gets-an-eye-watering-price-tag
https://en.wikipedia.org/wiki/History_of_hard_disk_drives
https://www.techradar.com/news/at-100tb-the-worlds-biggest-ssd-gets-an-eye-watering-price-tag

8 Chapter 1 Introduction to Computers and C

1.3 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and
more complex in structure as we progress from the simplest data items (called “bits”)
to richer ones, such as characters and fields. The following diagram illustrates a por-
tion of the data hierarchy:

Bits
A bit is short for “binary digit”—a digit that can assume one of two values—and is a
computer’s smallest data item. It can have the value 0 or 1. Remarkably, computers’
impressive functions involve only the simplest manipulations of 0s and 1s—examin-
ing a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to 0 or from
0 to 1). Bits form the basis of the binary number system, which we discuss in our
“Number Systems” appendix.

Characters
Work with data in the low-level form of bits is tedious. Instead, people prefer to work
with decimal digits (0–9), letters (A–Z and a–z) and special symbols such as

$ @ % & * () – + " : ; , ? /

Digits, letters and special symbols are known as characters. The computer’s character
set contains the characters used to write programs and represent data items. Comput-
ers process only 1s and 0s, so a computer’s character set represents each character as a
pattern of 1s and 0s. C uses the ASCII (American Standard Code for Information
Interchange) character set by default. C also supports Unicode® characters composed
of one, two, three or four bytes (8, 16, 24 or 32 bits, respectively).18

Tom Blue

Sally Black

Judy Green File

J u d y Field

Character J

Record

Iris Orange

Randy Red

01001010

1 Bit

Judy Green

18. “Programming with Unicode.” Accessed November 1, 2020. https://unicodebook.readthe-
docs.io/programming_languages.html.

https://unicodebook.readthedocs.io/programming_languages.html
https://unicodebook.readthedocs.io/programming_languages.html

1.3 Data Hierarchy 9

Unicode contains characters for many of the world’s languages. ASCII is a (tiny)
subset of Unicode representing letters (a–z and A–Z), digits and some common spe-
cial characters. You can view the ASCII subset of Unicode at

https://www.unicode.org/charts/PDF/U0000.pdf

For the lengthy Unicode charts for all languages, symbols, emojis and more, visit
http://www.unicode.org/charts/

Fields
Just as characters are composed of bits, fields are composed of characters or bytes. A
field is a group of characters or bytes that conveys meaning. For example, a field con-
sisting of uppercase and lowercase letters could represent a person’s name, and a field
consisting of decimal digits could represent a person’s age in years.

Records
Several related fields can be used to compose a record. In a payroll system, for exam-
ple, the record for an employee might consist of the following fields (possible types
for these fields are shown in parentheses):

• Employee identification number (a whole number).

• Name (a group of characters).

• Address (a group of characters).

• Hourly pay rate (a number with a decimal point).

• Year-to-date earnings (a number with a decimal point).

• Amount of taxes withheld (a number with a decimal point).

Thus, a record is a group of related fields. All the fields listed above belong to the same
employee. A company might have many employees and a payroll record for each.

Files
A file is a group of related records. More generally, a file contains arbitrary data in
arbitrary formats. Some operating systems view a file simply as a sequence of bytes—
any organization of the bytes in a file, such as organizing the data into records, is a
view created by the application programmer. You’ll see how to do that in Chapter 11,
File Processing. It’s not unusual for an organization to have many files, some contain-
ing billions, or even trillions, of characters of information. As we’ll see below, with
big data, far larger file sizes are becoming increasingly common.

Databases
A database is a collection of data organized for easy access and manipulation. The
most popular model is the relational database, in which data is stored in simple
tables. A table includes records and fields. For example, a table of students might
include first name, last name, major, year, student ID number and grade-point-aver-
age fields. The data for each student is a record, and the individual pieces of informa-

https://www.unicode.org/charts/PDF/U0000.pdf
http://www.unicode.org/charts/

